11 research outputs found
The Ultraviolet Imaging Telescope: Instrument and Data Characteristics
The Ultraviolet Imaging Telescope (UIT) was flown as part of the Astro
observatory on the Space Shuttle Columbia in December 1990 and again on the
Space Shuttle Endeavor in March 1995. Ultraviolet (1200-3300 Angstroms) images
of a variety of astronomical objects, with a 40 arcmin field of view and a
resolution of about 3 arcsec, were recorded on photographic film. The data
recorded during the first flight are available to the astronomical community
through the National Space Science Data Center (NSSDC); the data recorded
during the second flight will soon be available as well. This paper discusses
in detail the design, operation, data reduction, and calibration of UIT,
providing the user of the data with information for understanding and using the
data. It also provides guidelines for analyzing other astronomical imagery made
with image intensifiers and photographic film.Comment: 44 pages, LaTeX, AAS preprint style and EPSF macros, accepted by PAS
Ultraviolet Signposts of Resonant Dynamics in the Starburst-Ringed Sab Galaxy, M94 (NGC 4736)
M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging
Telescope (FUV-band), Hubble Space Telescope (NUV-band), Kitt Peak 0.9-m
telescope (H-alpha, R, and I bands), and Palomar 5-m telescope (B-band), along
with spectra from the International Ultraviolet Explorer and Lick 1-m
telescopes. The wide-field UIT image shows FUV emission from (a) an elongated
nucleus, (b) a diffuse inner disk, where H-alpha is observed in absorption, (c)
a bright inner ring of H II regions at the perimeter of the inner disk (R = 48
arcsec. = 1.1 kpc), and (d) two 500-pc size knots of hot stars exterior to the
ring on diametrically opposite sides of the nucleus (R= 130 arcsec. = 2.9 kpc).
The HST/FOC image resolves the NUV emission from the nuclear region into a
bright core and a faint 20 arcsec. long ``mini-bar'' at a position angle of 30
deg. Optical and IUE spectroscopy of the nucleus and diffuse inner disk
indicates an approximately 10^7 or 10^8 yr-old stellar population from
low-level starbirth activity blended with some LINER activity. Analysis of the
H-alpha, FUV, NUV, B, R, and I-band emission along with other observed tracers
of stars and gas in M94 indicates that most of the star formation is being
orchestrated via ring-bar dynamics involving the nuclear mini-bar, inner ring,
oval disk, and outer ring. The inner starburst ring and bi-symmetric knots at
intermediate radius, in particular, argue for bar-mediated resonances as the
primary drivers of evolution in M94 at the present epoch. Similar processes may
be governing the evolution of the ``core-dominated'' galaxies that have been
observed at high redshift. The gravitationally-lensed ``Pretzel Galaxy''
(0024+1654) at a redshift of approximately 1.5 provides an important precedent
in this regard.Comment: revised figure 1 (corrected coordinate labels on declination axis);
19 pages of text + 19 figures (jpg files); accepted for publication in A
NIRCAM image simulations for NGST wavefront sensing
The Next Generation Space Telescope (NGST) will be a segmented, deployable, infrared-optimized 6.5m space telescope. Its active primary segments will be aligned, co-phased, and then fine-tuned in order to deliver image quality sufficient for the telescope's intended scientific goals. Wavefront sensing used to drive this tuning will come from the analysis of focussed and defocussed images taken with its near-IR science camera, NIRCAM. There is a pressing need to verify that this will be possible with the near-IR detectors that are still under development for NGST. We create simulated NIRCAM images to test the maintenance phase of this plan. Our simulations incorporate Poisson and electronics read noise, and are designed to be able to include various detector and electronics non-linearities. We present our first such simulation, using known or predicted properties of HAWAII HgCdTe focal plane array detectors. Detector effects characterized by the Independent Detector Testing Laboratory will be included as they become available. Simulating InSb detectors can also be done within this framework in future. We generate Point-Spread Functions (PSF's) for a segmented aperture geometry with various wavefront aberrations, and convolve this with typical galaxy backgrounds and stellar foregrounds. We then simulate up-the-ramp (MULTIACCUM in HST parlance) exposures with cosmic ray hits. We pass these images through the HST NICMOS `CALNICA' calibration task to filter out cosmic ray hits. The final images are to be fed to wavefront sensing software, in order to find the ranges of exposure times, filter bandpass, defocus, and calibration star magnitude required to keep the NGST image within its specifications
Ultraviolet Signatures of Tidal Interaction in the Giant Spiral Galaxy, M101
We present new evidence for tidal interactions having occurred in the disk of
M101 in the last 10^8 - 10^9 years. Recent imaging of the far-ultraviolet
emission from M101 by the Shuttle-borne Ultraviolet Imaging Telescope (UIT)
reveals with unprecedented clarity a disk-wide pattern of multiple linear arm
segments (``crooked arms''). The deep FUV image also shows a faint outer spiral
arm with a (``curly tail'') feature that appears to loop around the supergiant
HII region NGC 5471 - linking this outlying starburst with the rest of the
galaxy. These FUV-bright features most likely trace hot O & B-type stars along
with scattered light from associated nebular dust. Counterparts of the
outermost ``crooked arms'' are evident in maps at visible wavelengths and in
the 21-cm line of HI. The inner-disk FUV arms are most closely associated with
H knots and the outer (downstream) sides of CO arms. Comparisons of the
``crooked arm'' and ``curly tail'' morphologies with dynamical simulations
yield the greatest similitude, when the non- axisymmetric forcing comes from a
combination of ``external interactions'' with one or more companion galaxies
and ``internal perturbations'' from massive objects orbiting within the disk.
We speculate that NGC 5471 represents one of these ``massive disturbers''
within the disk, whose formation followed from a tidal interaction between M101
and a smaller galaxy.Comment: Paper format (latex); length of paper (8); 4 gif figure files; uses
aas2pp4.sty AASTeX macro file; to be published in Part I of the Astrophysical
Journa
NIRCAM image simulations for NGST wavefront sensing
The Next Generation Space Telescope (NGST) will be a segmented, deployable, infrared-optimized 6.5m space telescope. Its active primary segments will be aligned, co-phased, and then fine-tuned in order to deliver image quality sufficient for the telescope's intended scientific goals. Wavefront sensing used to drive this tuning will come from the analysis of focussed and defocussed images taken with its near-IR science camera, NIRCAM. There is a pressing need to verify that this will be possible with the near-IR detectors that are still under development for NGST. We create simulated NIRCAM images to test the maintenance phase of this plan. Our simulations incorporate Poisson and electronics read noise, and are designed to be able to include various detector and electronics non-linearities. We present our first such simulation, using known or predicted properties of HAWAII HgCdTe focal plane array detectors. Detector effects characterized by the Independent Detector Testing Laboratory will be included as they become available. Simulating InSb detectors can also be done within this framework in future. We generate Point-Spread Functions (PSF's) for a segmented aperture geometry with various wavefront aberrations, and convolve this with typical galaxy backgrounds and stellar foregrounds. We then simulate up-the-ramp (MULTIACCUM in HST parlance) exposures with cosmic ray hits. We pass these images through the HST NICMOS `CALNICA' calibration task to filter out cosmic ray hits. The final images are to be fed to wavefront sensing software, in order to find the ranges of exposure times, filter bandpass, defocus, and calibration star magnitude required to keep the NGST image within its specifications
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States.
The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing
Recommended from our members
Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States.
The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing