1,077 research outputs found

    The role of cVA and the Odorant binding protein Lush in social and sexual behavior in <i>Drosophila melanogaster</i>:cVA and social behavior

    Get PDF
    Social living is beneficial because it allows conspecifics to interact in ways that increase their chances of survival and reproduction. A key mechanism underlying these benefits is the ability to recognize conspecifics; thus, allowing the production of coordinated social interactions. Identification of such individuals is often through chemical communication: the individuals’ pheromonal profile indicates their sex, species and even past experiences. However we know little about how the chemosensory system of conspecifics detects and how the nervous system processes this information. One of the best documented pheromonal detection mechanism is that of cis-Vaccenyl Acetate (cVA) made by male Drosophila melanogaster and transferred to females during mating. Sensing of cVA by males inhibits courtship behavior towards already mated females. Sensing of cVA on other males also inhibits courtship and increases aggression. In this hybrid review/research article, we discuss the pheromonal system of Drosophila putting an emphasis on the molecular and cellular mechanisms involved in cVA sensing by the olfactory system, perception by the nervous system and ultimately the regulation of social interactions. The behavioral effect of cVA is context- as well as experience-dependent leading us to conclude that cVA plays a modulatory role in regulating social interactions rather than being a recognition pheromone. We also provide new behavioral data on the function of the Odorant Binding Protein Lush, which binds cVA in olfactory sensilla and help sensing this chemical. Our data indicate that lush may be involved in the sensing of additional pheromones to cVA and suggest the existence of a lush-independent cVA detecting system. Interpretation of our data in the light of our current knowledge about pheromonal recognition in Drosophila indicates that this system is still incompletely understood

    The neurogenetics of group behavior in Drosophila melanogaster

    Get PDF
    Organisms rarely act in isolation. Their decisions and movements are often heavily influenced by direct and indirect interactions with conspecifics. For example, we each represent a single node within a social network of family and friends, and an even larger network of strangers. This group membership can affect our opinions and actions. Similarly, when in a crowd, we often coordinate our movements with others like fish in a school, or birds in a flock. Contributions of the group to individual behaviors are observed across a wide variety of taxa but their biological mechanisms remain largely unknown. With the advent of powerful computational tools as well as the unparalleled genetic accessibility and surprisingly rich social life of Drosophila melanogaster, researchers now have a unique opportunity to investigate molecular and neuronal determinants of group behavior. Conserved mechanisms and/or selective pressures in D. melanogaster can likely inform a much wider phylogenetic scale. Here, we highlight two examples to illustrate how quantitative and genetic tools can be combined to uncover mechanisms of two group behaviors in D. melanogaster: social network formation and collective behavior. Lastly, we discuss future challenges towards a full understanding how coordinated brain activity across many individuals gives rise to the behavioral patterns of animal societies

    Social structures depend on innate determinants and chemosensory processing in Drosophila

    Get PDF
    Flies display transient social interactions in groups. However, whether fly–fly interactions are stochastic or structured remains unknown. We hypothesized that groups of flies exhibit patterns of social dynamics that would manifest as nonrandom social interaction networks. To test this, we applied a machine vision system to track the position and orientation of flies in an arena and designed a classifier to detect interactions between pairs of flies. We show that the vinegar fly, Drosophila melanogaster, forms nonrandom social interaction networks, distinct from virtual network controls (constructed from the intersections of individual locomotor trajectories). In addition, the formation of interaction networks depends on chemosensory cues. Gustatory mutants form networks that cannot be distinguished from their virtual network controls. Olfactory mutants form networks that are greatly disrupted compared with control flies. Different wild-type strains form social interaction networks with quantitatively different properties, suggesting that the genes that influence this network phenotype vary across and within wild-type populations. We have established a paradigm for studying social behaviors at a group level in Drosophila and expect that a genetic dissection of this phenomenon will identify conserved molecular mechanisms of social organization in other species

    Layered Social Network Analysis Reveals Complex Relationships in Kindergarteners.

    Get PDF
    The interplay between individuals forms building blocks for social structure. Here, we examine the structure of behavioral interactions among kindergarten classroom with a hierarchy-neutral approach to examine all possible underlying patterns in the formation of layered networks of "reciprocal" interactions. To understand how these layers are coordinated, we used a layered motif approach. Our dual layered motif analysis can therefore be thought of as the dynamics of smaller groups that tile to create the group structure, or alternatively they provide information on what the average child would do in a given local social environment. When we examine the regulated motifs in layered networks, we find that transitivity is at least partially involved in the formation of these layered network structures. We also found complex combinations of the expected reciprocal interactions. The mechanisms used to understand social networks of kindergarten children here are also applicable on a more general scale to any group of individuals where interactions and identities can be readily observed and scored

    Advanced analysis of a cryptochrome mutation's effects on the robustness and phase of molecular cycles in isolated peripheral tissues of Drosophila

    Get PDF
    BACKGROUND: Previously, we reported effects of the cry(b) mutation on circadian rhythms in period and timeless gene expression within isolated peripheral Drosophila tissues. We relied on luciferase activity driven by the respective regulatory genomic elements to provide real-time reporting of cycling gene expression. Subsequently, we developed a tool kit for the analysis of behavioral and molecular cycles. Here, we use these tools to analyze our earlier results as well as additional data obtained using the same experimental designs. RESULTS: Isolated antennal pairs, heads, bodies, wings and forelegs were evaluated under light-dark cycles. In these conditions, the cry(b) mutation significantly decreases the number of rhythmic specimens in each case except the wing. Moreover, among those specimens with detectable rhythmicity, mutant rhythms are significantly weaker than cry(+) controls. In addition, cry(b) alters the phase of period gene expression in these tissues. Furthermore, peak phase of luciferase-reported period and timeless expression within cry(+) samples is indistinguishable in some tissues, yet significantly different in others. We also analyze rhythms produced by antennal pairs in constant conditions. CONCLUSIONS: These analyses further show that circadian clock mechanisms in Drosophila may vary in a tissue-specific manner, including how the cry gene regulates circadian gene expression

    Signal analysis of behavioral and molecular cycles

    Get PDF
    BACKGROUND: Circadian clocks are biological oscillators that regulate molecular, physiological, and behavioral rhythms in a wide variety of organisms. While behavioral rhythms are typically monitored over many cycles, a similar approach to molecular rhythms was not possible until recently; the advent of real-time analysis using transgenic reporters now permits the observations of molecular rhythms over many cycles as well. This development suggests that new details about the relationship between molecular and behavioral rhythms may be revealed. Even so, behavioral and molecular rhythmicity have been analyzed using different methods, making such comparisons difficult to achieve. To address this shortcoming, among others, we developed a set of integrated analytical tools to unify the analysis of biological rhythms across modalities. RESULTS: We demonstrate an adaptation of digital signal analysis that allows similar treatment of both behavioral and molecular data from our studies of Drosophila. For both types of data, we apply digital filters to extract and clarify details of interest; we employ methods of autocorrelation and spectral analysis to assess rhythmicity and estimate the period; we evaluate phase shifts using crosscorrelation; and we use circular statistics to extract information about phase. CONCLUSION: Using data generated by our investigation of rhythms in Drosophila we demonstrate how a unique aggregation of analytical tools may be used to analyze and compare behavioral and molecular rhythms. These methods are shown to be versatile and will also be adaptable to further experiments, owing in part to the non-proprietary nature of the code we have developed

    The neurogenetics of group behavior in Drosophila melanogaster

    Get PDF
    Organisms rarely act in isolation. Their decisions and movements are often heavily influenced by direct and indirect interactions with conspecifics. For example, we each represent a single node within a social network of family and friends, and an even larger network of strangers. This group membership can affect our opinions and actions. Similarly, when in a crowd, we often coordinate our movements with others like fish in a school, or birds in a flock. Contributions of the group to individual behaviors are observed across a wide variety of taxa but their biological mechanisms remain largely unknown. With the advent of powerful computational tools as well as the unparalleled genetic accessibility and surprisingly rich social life of Drosophila melanogaster, researchers now have a unique opportunity to investigate molecular and neuronal determinants of group behavior. Conserved mechanisms and/or selective pressures in D. melanogaster can likely inform a much wider phylogenetic scale. Here, we highlight two examples to illustrate how quantitative and genetic tools can be combined to uncover mechanisms of two group behaviors in D. melanogaster: social network formation and collective behavior. Lastly, we discuss future challenges towards a full understanding how coordinated brain activity across many individuals gives rise to the behavioral patterns of animal societies

    Social structures depend on innate determinants and chemosensory processing in Drosophila

    Get PDF
    Flies display transient social interactions in groups. However, whether fly–fly interactions are stochastic or structured remains unknown. We hypothesized that groups of flies exhibit patterns of social dynamics that would manifest as nonrandom social interaction networks. To test this, we applied a machine vision system to track the position and orientation of flies in an arena and designed a classifier to detect interactions between pairs of flies. We show that the vinegar fly, Drosophila melanogaster, forms nonrandom social interaction networks, distinct from virtual network controls (constructed from the intersections of individual locomotor trajectories). In addition, the formation of interaction networks depends on chemosensory cues. Gustatory mutants form networks that cannot be distinguished from their virtual network controls. Olfactory mutants form networks that are greatly disrupted compared with control flies. Different wild-type strains form social interaction networks with quantitatively different properties, suggesting that the genes that influence this network phenotype vary across and within wild-type populations. We have established a paradigm for studying social behaviors at a group level in Drosophila and expect that a genetic dissection of this phenomenon will identify conserved molecular mechanisms of social organization in other species

    Design of the ARES Mars Airplane and Mission Architecture

    Get PDF
    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project

    Ariel - Volume 9 Number 4

    Get PDF
    Executive Editor Emily Wofford Business Manager Fredric Jay Matlin University News John Patrick Welch World News George Robert Coar Editorials Editor Steve Levine Features Mark Rubin Brad Feldstein Sports Editor EIi Saleeby Circulation Victor Onufreiczuk Lee Wugofski Graphics and Art Steve Hulkower Commons Editor Brenda Peterso
    • …
    corecore