6 research outputs found

    Engineering local strain for single-atom nuclear acoustic resonance in silicon

    Full text link
    Mechanical strain plays a key role in the physics and operation of nanoscale semiconductor systems, including quantum dots and single-dopant devices. Here, we describe the design of a nanoelectronic device, where a single nuclear spin is coherently controlled via nuclear acoustic resonance (NAR) through the local application of dynamical strain. The strain drives spin transitions by modulating the nuclear quadrupole interaction. We adopt an AlN piezoelectric actuator compatible with standard silicon metal-oxide-semiconductor processing and optimize the device layout to maximize the NAR drive. We predict NAR Rabi frequencies of order 200 Hz for a single 123Sb nucleus in a wide region of the device. Spin transitions driven directly by electric fields are suppressed in the center of the device, allowing the observation of pure NAR. Using electric field gradient-elastic tensors calculated by the density-functional theory, we extend our predictions to other high-spin group-V donors in silicon and to the isoelectronic 73Ge atom

    Coherent electrical control of a single high-spin nucleus in silicon

    Full text link
    Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers1 and demonstrations of quantum search2 and factoring3 algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron4–6. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods7–9 relied on transducing electric signals into magnetic fields via the electron–nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single 123Sb (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 196110 but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots11,12 could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields

    PEP1 regulates perennial flowering in Arabis alpina

    No full text
    6 pages, 4 figures.-- Supporting information (Suppl. figures S1-S8, tables S1-S2) available at: http://www.nature.com/nature/journal/vaop/ncurrent/suppinfo/nature07988.htmlThe GenBank accession number for the PEP1 BAC sequence is FJ543377, and for the PEP1 cDNA sequence is FJ755930.Annual plants complete their life cycle in one year and initiate flowering only once, whereas perennials live for many years and flower repeatedly. How perennials undergo repeated cycles of vegetative growth and flowering that are synchronized to the changing seasons has not been extensively studied. Flowering is best understood in annual Arabidopsis thaliana, but many closely related species, such as Arabis alpina, are perennials. We identified the A. alpina mutant perpetual flowering 1 (pep1), and showed that PEP1 contributes to three perennial traits. It limits the duration of flowering, facilitating a return to vegetative development, prevents some branches from undergoing the floral transition allowing polycarpic growth habit, and confers a flowering response to winter temperatures that restricts flowering to spring. Here we show that PEP1 is the orthologue of the A. thaliana gene FLOWERING LOCUS C (FLC). The FLC transcription factor inhibits flowering until A. thaliana is exposed to winter temperatures, which trigger chromatin modifications that stably repress FLC transcription. In contrast, PEP1 is only transiently repressed by low temperatures, causing repeated seasonal cycles of repression and activation of PEP1 transcription that allow it to carry out functions characteristic of the cyclical life history of perennials. The patterns of chromatin modifications at FLC and PEP1 differ correlating with their distinct expression patterns. Thus we describe a critical mechanism by which flowering regulation differs between related perennial and annual species, and propose that differences in chromatin regulation contribute to this variation.The laboratories of H.S. and G.C. are partly funded by a core grant from the Max Planck Society.Peer reviewe
    corecore