478 research outputs found
Pairing in few-fermion systems with attractive interactions
We have studied quasi one-dimensional few-particle systems consisting of one
to six ultracold fermionic atoms in two different spin states with attractive
interactions. We probe the system by deforming the trapping potential and by
observing the tunneling of particles out of the trap. For even particle numbers
we observe a tunneling behavior which deviates from uncorrelated
single-particle tunneling indicating the existence of pair correlations in the
system. From the tunneling timescales we infer the differences in interaction
energies of systems with different number of particles which show a strong
odd-even effect, similar to the one observed for neutron separation experiments
in nuclei.Comment: 9 pages, 6 figure
From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time
Knowing when a physical system has reached sufficient size for its
macroscopic properties to be well described by many-body theory is difficult.
We investigate the crossover from few to many-body physics by studying quasi
one-dimensional systems of ultracold atoms consisting of a single impurity
interacting with an increasing number of identical fermions. We measure the
interaction energy of such a system as a function of the number of majority
atoms for different strengths of the interparticle interaction. As we increase
the number of majority atoms one by one we observe the fast convergence of the
normalized interaction energy towards a many-body limit calculated for a single
impurity immersed in a Fermi sea of majority particles.Comment: 9 pages, 5 figure
Coherent molecule formation in anharmonic potentials near confinement-induced resonances
We perform a theoretical and experimental study of a system of two ultracold
atoms with tunable interaction in an elongated trapping potential. We show that
the coupling of center-of-mass and relative motion due to an anharmonicity of
the trapping potential leads to a coherent coupling of a state of an unbound
atom pair and a molecule with a center of mass excitation. By performing the
experiment with exactly two particles we exclude three-body losses and can
therefore directly observe coherent molecule formation. We find quantitative
agreement between our theory of inelastic confinement-induced resonances and
the experimental results. This shows that the effects of center-of-mass to
relative motion coupling can have a significant impact on the physics of
quasi-1D quantum systems.Comment: 7 pages, 4 figure
Observation of the Pairing Gap in a Strongly Interacting Fermi Gas
We study fermionic pairing in an ultracold two-component gas of Li atoms
by observing an energy gap in the radio-frequency excitation spectra. With
control of the two-body interactions via a Feshbach resonance we demonstrate
the dependence of the pairing gap on coupling strength, temperature, and Fermi
energy. The appearance of an energy gap with moderate evaporative cooling
suggests that our full evaporation brings the strongly interacting system deep
into a superfluid state.Comment: 18 pages, 3 figure
Magnetic field control of elastic scattering in a cold gas of fermionic lithium atoms
We study elastic collisions in an optically trapped spin mixture of fermionic
lithium atoms in the presence of magnetic fields up to 1.5kG by measuring
evaporative loss. Our experiments confirm the expected magnetic tunability of
the scattering length by showing the main features of elastic scattering
according to recent calculations. We measure the zero crossing of the
scattering length that is associated with a predicted Feshbach resonance at
530(3)G. Beyond the resonance we observe the expected large cross section in
the triplet scattering regime
Exploring the BEC-BCS Crossover with an Ultracold Gas of Li Atoms
We present an overview of our recent measurements on the crossover from a
Bose-Einstein condensate of molecules to a Bardeen-Cooper-Schrieffer
superfluid. The experiments are performed on a two-component spin-mixture of
Li atoms, where a Fesh\-bach resonance serves as the experimental key to
tune the s-wave scattering length and thus to explore the various interaction
regimes. In the BEC-BCS crossover, we have characterized the interaction energy
by measuring the size of the trapped gas, we have studied collective excitation
modes, and we have observed the pairing gap. Our observations provide strong
evidence for superfluidity in the strongly interacting Fermi gas.Comment: Proceedings of ICAP-2004 (Rio de Janeiro). Review on Innsbruck
BEC-BCS crossover experiments with updated Feshbach resonance positio
Collisional stability of a three-component degenerate Fermi gas
We report on the creation of a degenerate Fermi gas consisting of a balanced
mixture of atoms in three different hyperfine states of Li. This new system
consists of three distinguishable Fermions with different and tunable
interparticle scattering lengths , and . We are able
to prepare samples containing atoms in each state at a
temperature of about nK, which corresponds to . We
investigated the collisional stability of the gas for magnetic fields between 0
and 600 G and found a prominent loss feature at 130 G. From lifetime
measurements we determined three-body loss coefficients, which vary over nearly
three orders of magnitude
- …