49 research outputs found

    Lipid levels are inversely associated with infectious and all-cause mortality: international MONDO study results.

    Get PDF
    Cardiovascular (CV) events are increased 36-fold in patients with end-stage renal disease. However, randomized controlled trials to lower LDL cholesterol (LDL-C) and serum total cholesterol (TC) have not shown significant mortality improvements. An inverse association of TC and LDL-C with all-cause and CV mortality has been observed in patients on chronic dialysis. Lipoproteins also may protect against infectious diseases. We used data from 37,250 patients in the international Monitoring Dialysis Outcomes (MONDO) database to evaluate the association between lipids and infection-related or CV mortality. The study began on the first day of lipid measurement and continued for up to 4 years. We applied Cox proportional models with time-varying covariates to study associations of LDL-C, HDL cholesterol (HDL-C), and triglycerides (TGs) with all-cause, CV, infectious, and other causes of death. Overall, 6,147 patients died (19.2% from CV, 13.2% from infection, and 67.6% from other causes). After multivariable adjustment, higher LDL-C, HDL-C, and TGs were independently associated with lower all-cause death risk. Neither LDL-C nor TGs were associated with CV death, and HDL-C was associated with lower CV risk. Higher LDL-C and HDL-C were associated with a lower risk of death from infection or other non-CV causes. LDL-C was associated with reduced all-cause and infectious, but not CV mortality, which resulted in the inverse association with all-cause mortality

    Metabolic effects of dialyzate glucose in chronic hemodialysis: results from a prospective, randomized crossover trial

    Get PDF
    Background. There is no agreement concerning dialyzate glucose concentration in hemodialysis (HD) and 100 and 200 mg/dL (G100 and G200) are frequently used. G200 may result in diffusive glucose flux into the patient, with consequent hyperglycemia and hyperinsulinism, and electrolyte alterations, in particular potassium (K) and phosphorus (P). This trial compared metabolic effects of G100 versus G200. Methods. Chronic HD patients participated in this randomized, single masked, controlled crossover trial (www.clinicaltrials.gov: #NCT00618033) consisting of two consecutive 3-week segments with G100 and G200, respectively. Intradialytic serum glucose (SG) and insulin concentrations (SI) were measured at 0, 30, 60, 120, 180, 240 min and immediately post-HD; P and K were measured at 0, 120, 180 min and post-HD. Hypoglycemia was defined as an SG <70 mg/dL. Mean SG and SI were computed as area under the curve divided by treatment time. Results. Fourteen diabetic and 15 non-diabetic subjects were studied. SG was significantly higher with G200 as compared to G100, both in diabetic {G200: 192.8 ± 48.1 mg/dL; G100: 154.0 ± 27.3 mg/dL; difference 38.8 [95% confidence interval (CI): 21.2-56.4] mg/dL; P < 0.001} and non-diabetic subjects [G200: 127.0 ± 11.2 mg/dL; G100 106.5 ± 10.8 mg/dL; difference 20.6 (95% CI: 15.3-25.9) mg/dL; P < 0.001]. SI was significantly higher with G200 in non-diabetic subjects. Frequency of hypoglycemia, P and K serum levels, interdialytic weight gain and adverse intradialytic events did not differ significantly between G100 and G200. Conclusion. G200 may exert unfavorable metabolic effects in chronic HD patients, in particular hyperglycemia and hyperinsulinism, the latter in non-diabetic subject

    Blood pressure stability rather than blood pressure level is associated with increased survival

    No full text

    Dextrose solution for priming and rinsing the extracorporeal circuit in hemodialysis patients: A prospective pilot study

    No full text
    Introduction: Excess sodium intake and consequent volume overload are major clinical problems in hemodialysis (HD) contributing to adverse outcomes. Saline used for priming and rinsing of the extracorporeal circuit is a potentially underappreciated source of intradialytic sodium gain. We aimed to examine the feasibility and clinical effects of replacing saline as the priming and rinsing fluid by a 5% dextrose solution. Materials and methods: We enrolled non-diabetic and anuric stable HD patients. First, the extracorporeal circuit was primed and rinsed with approximately 200–250 mL of isotonic saline during 4 weeks (Phase 1), subsequently a similar volume of a 5% dextrose solution replaced the saline for another 4 weeks (Phase 2), followed by another 4 weeks of saline (Phase 3). We collected data on interdialytic weight gain (IDWG), pre- and post-dialysis blood pressure, intradialytic symptoms, and thirst. Results: Seventeen chronic HD patients (11 males, age 54.1 ± 18.7 years) completed the study. The average priming and rinsing volumes were 236.7 ± 77.5 and 245.0 ± 91.8 mL respectively. The mean IDWG did not significantly change (2.52 ± 0.88 kg in Phase 1; 2.28 ± 0.70 kg in Phase 2; and 2.51 ± 1.2 kg in Phase 3). No differences in blood pressures, intradialytic symptoms or thirst were observed. Conclusions: Replacing saline by 5% dextrose for priming and rinsing is feasible in stable HD patients and may reduce intradialytic sodium loading. A non-significant trend toward a lower IDWG was observed when 5% dextrose was used. Prospective studies with a larger sample size and longer follow-up are needed to gain further insight into the possible effects of using alternate priming and rinsing solutions lowering intradialytic sodium loading. Trial registration: Identifier NCT01168947 (ClinicalTrials.gov)
    corecore