45 research outputs found

    Functions of MDMX in the Modulation of the p53-Response

    Get PDF
    The MDM family proteins MDM2 and MDMX are two critical regulators of the p53 tumor suppressor protein. Expression of both proteins is necessary for allowing the embryonal development by keeping the activity of p53 in check. Upon stresses that need to activate p53 to perform its function as guardian of the genome, p53 has to be liberated from these two inhibitors. In this review, we will discuss the various mechanisms by which MDMX protein levels are downregulated upon various types of stress, including posttranslational modifications of the MDMX protein and the regulation of mdmx mRNA expression, including alternative splicing. In addition, the putative function(s) of the described MDMX splice variants, particularly in tumor development, will be discussed. Lastly, in contrast to common belief, we have recently shown the existence of a p53-MDMX feedback loop, which is important for dampening the p53-response at later phases after genotoxic stress

    Oncogenic functions of hMDMX in in vitro transformation of primary human fibroblasts and embryonic retinoblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In around 50% of all human cancers the tumor suppressor p53 is mutated. It is generally assumed that in the remaining tumors the wild-type p53 protein is functionally impaired. The two main inhibitors of p53, hMDM2 (MDM2) and hMDMX (MDMX/MDM4) are frequently overexpressed in wild-type p53 tumors. Whereas the main activity of hMDM2 is to degrade p53 protein, its close homolog hMDMX does not degrade p53, but it represses its transcriptional activity. Here we study the role of hMDMX in the neoplastic transformation of human fibroblasts and embryonic retinoblasts, since a high number of retinoblastomas contain elevated hMDMX levels.</p> <p>Methods</p> <p>We made use of an <it>in vitro </it>transformation model using a retroviral system of RNA interference and gene overexpression in primary human fibroblasts and embryonic retinoblasts. Consecutive knockdown of RB and p53, overexpression of SV40-small t, oncogenic HRasV12 and HA-hMDMX resulted in a number of stable cell lines representing different stages of the transformation process, enabling a comparison between loss of p53 and hMDMX overexpression. The cell lines were tested in various assays to assess their oncogenic potential.</p> <p>Results</p> <p>Both p53-knockdown and hMDMX overexpression accelerated proliferation and prevented growth suppression induced by introduction of oncogenic Ras, which was required for anchorage-independent growth and the ability to form tumors <it>in vivo</it>. Furthermore, we found that hMDMX overexpression represses basal p53 activity to some extent. Transformed fibroblasts with very high levels of hMDMX became largely resistant to the p53 reactivating drug Nutlin-3. The Nutlin-3 response of hMDMX transformed retinoblasts was intact and resembled that of retinoblastoma cell lines.</p> <p>Conclusions</p> <p>Our studies show that hMDMX has the essential properties of an oncogene. Its constitutive expression contributes to the oncogenic phenotype of transformed human cells. Its main function appears to be p53 inactivation. Therefore, developing new drugs targeting hMDMX is a valid approach to obtain new treatments for a subset of human tumors expressing wild-type p53.</p

    HDMX-L is expressed from a functional P53-responsive promoter in the first intron of the HDMX gene, and participates in an auto-regulatory feedback loop to control P53 activity.

    No full text
    The p53 regulatory network is critically involved in preventing the initiation of cancer. In unstressed cells p53 is maintained at low levels and is largely inactive, mainly through the action of its two essential negative regulators, HDM2 and HDMX. p53 abundance and activity are upregulated in response to various stresses including DNA damage and oncogene activation. Active p53 initiates transcriptional and transcription-independent programs that result in cell cycle arrest, cellular senescence or apoptosis. p53 also activates transcription of HDM2, which initially leads to the degradation of HDMX, creating a positive feedback loop to obtain maximal activation of p53. Subsequently, when stress-induced post-translational modifications start to decline, HDM2 becomes effective in targeting p53 for degradation, thus attenuating the p53 response. To date, no clear function for HDMX in this critical attenuation phase has been demonstrated experimentally. Like HDM2, the HDMX gene contains a promoter (P2) in its first intron that is potentially inducible by p53. We show that p53 activation in response to a plethora of p53-activating agents induces the transcription of a novel HDMX mRNA transcript from the HDMX-P2 promoter. This mRNA is more efficiently translated than that expressed from the constitutive HDMX-P1 promoter, and it encodes a long form of HDMX protein, HDMX-L. Importantly, we demonstrate that HDMX-L cooperates with HDM2 to promote the ubiquitination of p53, and that p53-induced HDMX transcription from the P2 promoter can play a key role in the attenuation phase of the p53-response, to effectively diminish p53 abundance as cells recover from stress

    HDAC inhibition increases HLA class I expression in uveal melanoma

    Get PDF
    The treatment of uveal melanoma (UM) metastases or adjuvant treatment may imply immunological approaches or chemotherapy. It is to date unknown how epigenetic modifiers affect the expression of immunologically relevant targets, such as the HLA Class I antigens, in UM. We investigated the expression of HDACs and the histone methyl transferase EZH2 in a set of 64 UMs, using an Illumina HT12V4 array, and determined whether a histone deacetylase (HDAC) inhibitor and EZH2 inhibitor modified the expression of HLA Class I on three UM cell lines. Several HDACs (HDAC1, HDAC3, HDAC4, and HDAC8) showed an increased expression in high-risk UM, and were correlated with an increased HLA expression. HDAC11 had the opposite expression pattern. While in vitro tests showed that Tazemetostat did not influence cell growth, Quisinostat decreased cell sur
    corecore