21 research outputs found

    Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    No full text
    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanism(s) mediating [14C]L-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that L-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]L-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with L-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Maternal behaviours and adult offspring behavioural deficits are predicted by maternal TNFα concentration in a rat model of neurodevelopmental disorders

    Get PDF
    Exposure to inflammatory stressors during fetal development is a major risk factor for neurodevelopmental disorders (NDDs) in adult offspring. Maternal immune activation (MIA), induced by infection, causes an acute increase in pro-inflammatory cytokines which can increase the risk for NDDs directly by inducing placental and fetal brain inflammation, or indirectly through affecting maternal care behaviours thereby affecting postnatal brain development. Which of these two potential mechanisms dominates in increasing offspring risk for NDDs remains unclear. Here, we show that acute systemic maternal inflammation induced by the viral mimetic polyinosinic:polycytidylic acid (poly I:C) on gestational day 15 of rat pregnancy affects offspring and maternal behaviour, offspring cognition, and expression of NDD-relevant genes in the offspring brain. Dams exposed to poly I:C elicited an acute increase in the pro-inflammatory cytokine tumour necrosis factor (TNF; referred to here as TNFα), which predicted disruption of key maternal care behaviours. Offspring of poly I:C-treated dams showed early behavioural and adult cognitive deficits correlated to the maternal TNFα response, but, importantly, not with altered maternal care. We also found interacting effects of sex and treatment on GABAergic gene expression and DNA methylation in these offspring in a brain region-specific manner, including increased parvalbumin expression in the female adolescent frontal cortex. We conclude that the MIA-induced elevation of TNFα in the maternal compartment affects fetal neurodevelopment leading to altered offspring behaviour and cognition. Our results suggest that a focus on prenatal pathways affecting fetal neurodevelopment would provide greater insights into the mechanisms underpinning the TNFα-mediated genesis of altered offspring behaviour and cognition following maternal inflammation

    Relevant Assay to Study the Adhesion of Plasmodium falciparum-Infected Erythrocytes to the Placental Epithelium

    Get PDF
    In placental malaria, Plasmodium falciparum-infected erythrocytes adhere to the apical plasma membrane of the placental epithelium, triggering an impairment of placental function detrimental to the fetus. The design of anti-adhesion intervention strategies requires a detailed understanding of the mechanisms involved. However, most adhesion assays lack in vivo relevance and are hardly quantitative. Here, we describe a flow cytometry-based adhesion assay that is fully relevant by using apical epithelial plasma membrane vesicles as the adhesion matrix, and being applicable to infected erythrocytes directly isolated from patients. Adhesion is measured both as the percentage of pathogens bound to epithelial membrane vesicles as well as the mean number of vesicles bound per infected erythrocytes. We show that adhesins alternative to those currently identified could be involved. This demonstrates the power of this assay to advance our understanding of epithelial adhesion of infected erythrocytes and in the design of intervention strategies

    Función paterna en adolescentes en tratamiento por consumo de sustancias psicoactivas: clínica CEMIC- El Faro

    No full text
    La siguiente investigación aborda la importancia de la función paterna en los adolescentes en tratamiento por consumo de sustancias psicoactivas en la clínica CEMIC: el faro, de la ciudad de Cartagena- Bolívar. El consumo de sustancias psicoactivas es un malestar social, familiar y de salud que es muy evidente, teniendo en cuenta que el índice de crecimiento progresivo en diferentes estratos socioeconómicos es elevado. Es importante resaltar que: “El significado de la palabra “droga” varia a menudo, según el contexto en que use. Desde un punto de vista estrictamente científico, la droga es una sustancia química que afecta las funciones de los seres vivientes. Sin embargo en el caso del “abuso” o del “problema” de las drogas, el significado de la palabra adquiere un matiz social más que científico” (Sarason, I., Sarason, B. 1990, p. 383)

    Plasmodium falciparum Malaria Elicits Inflammatory Responses that Dysregulate Placental Amino Acid Transport

    Get PDF
    Placental malaria (PM) can lead to poor neonatal outcomes, including low birthweight due to fetal growth restriction (FGR), especially when associated with local inflammation (intervillositis or IV). The pathogenesis of PM-associated FGR is largely unknown, but in idiopathic FGR, impaired transplacental amino acid transport, especially through the system A group of amino acid transporters, has been implicated. We hypothesized that PM-associated FGR could result from impairment of transplacental amino acid transport triggered by IV. In a cohort of Malawian women and their infants, the expression and activity of system A (measured by Na+-dependent 14C-MeAIB uptake) were reduced in PM, especially when associated with IV, compared to uninfected placentas. In an in vitro model of PM with IV, placental cells exposed to monocyte/infected erythrocytes conditioned medium showed decreased system A activity. Amino acid concentrations analyzed by reversed phase ultra performance liquid chromatography in paired maternal and cord plasmas revealed specific alterations of amino acid transport by PM, especially with IV. Overall, our data suggest that the fetoplacental unit responds to PM by altering its placental amino acid transport to maintain adequate fetal growth. However, IV more profoundly compromises placental amino acid transport function, leading to FGR. Our study offers the first pathogenetic explanation for FGR in PM
    corecore