1,500 research outputs found
Performance Data Errors in Air Carrier Operations: Causes and Countermeasures
Several airline accidents have occurred in recent years as the result of erroneous weight or performance data used to calculate V-speeds, flap/trim settings, required runway lengths, and/or required climb gradients. In this report we consider 4 recent studies of performance data error, report our own study of ASRS-reported incidents, and provide countermeasures that can reduce vulnerability to accidents caused by performance data errors. Performance data are generated through a lengthy process involving several employee groups and computer and/or paper-based systems. Although much of the airline indUStry 's concern has focused on errors pilots make in entering FMS data, we determined that errors occur at every stage of the process and that errors by ground personnel are probably at least as frequent and certainly as consequential as errors by pilots. Most of the errors we examined could in principle have been trapped by effective use of existing procedures or technology; however, the fact that they were not trapped anywhere indicates the need for better countermeasures. Existing procedures are often inadequately designed to mesh with the ways humans process information. Because procedures often do not take into account the ways in which information flows in actual flight ops and time pressures and interruptions experienced by pilots and ground personnel, vulnerability to error is greater. Some aspects of NextGen operations may exacerbate this vulnerability. We identify measures to reduce the number of errors and to help catch the errors that occur
Picosecond timing of Microwave Cherenkov Impulses from High-Energy Particle Showers Using Dielectric-loaded Waveguides
We report on the first measurements of coherent microwave impulses from
high-energy particle-induced electromagnetic showers generated via the Askaryan
effect in a dielectric-loaded waveguide. Bunches of 12.16 GeV electrons with
total bunch energy of GeV were pre-showered in tungsten, and
then measured with WR-51 rectangular (12.6 mm by 6.3 mm) waveguide elements
loaded with solid alumina () bars. In the 5-8 GHz
single-mode band determined by the presence of the dielectric in the waveguide,
we observed band-limited microwave impulses with amplitude proportional to
bunch energy. Signals in different waveguide elements measuring the same shower
were used to estimate relative time differences with 2.3 picosecond precision.
These measurements establish a basis for using arrays of alumina-loaded
waveguide elements, with exceptional radiation hardness, as very high precision
timing planes for high-energy physics detectors.Comment: 16 pages, 15 figure
Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers
For fifty years, cosmic-ray air showers have been detected by their radio
emission. We present the first laboratory measurements that validate
electrodynamics simulations used in air shower modeling. An experiment at SLAC
provides a beam test of radio-frequency (RF) radiation from charged particle
cascades in the presence of a magnetic field, a model system of a cosmic-ray
air shower. This experiment provides a suite of controlled laboratory
measurements to compare to particle-level simulations of RF emission, which are
relied upon in ultra-high-energy cosmic-ray air shower detection. We compare
simulations to data for intensity, linearity with magnetic field, angular
distribution, polarization, and spectral content. In particular, we confirm
modern predictions that the magnetically induced emission in a dielectric forms
a cone that peaks at the Cherenkov angle and show that the simulations
reproduce the data within systematic uncertainties.Comment: 5 pages, 7 figure
Alternatives for Scheduling Departures for Efficient Surface Metering in ATD-2: Exploration in a Human-in-the-Loop Simulation
Human-in-the-Loop (HITL) simulation was conducted to explore the impacts of various surface metering goals on operations and Ramp Controllers at Charlotte Douglas International Airport (CLT). Three conditions were compared: Baseline, with no surface metering, instructions to meet advisory times at the gate only, and instructions to meet advisory times at the gate as well as the times at the scheduled taxiway spot, where aircraft are delivered to Air Traffic Control (ATC). Results showed increased compliance for taxiway spot times when compliance was first met for gate advisories. Instructing Ramp Controllers to meet advisory times at the gate improves spot time compliance and therefore surface scheduling predictability at CLT. Results also demonstrated there was increased compliance overall with gate and spot times in the second condition. This was likely due to higher Ramp Controller workload in the third condition
Evaluation of APREQCFR Coordination Procedures for Charlotte Douglas International Airport
NASA has been collaborating with the Federal Aviation Administration (FAA) and aviation industry partners to develop and demonstrate new concepts and technologies for the Integrated Arrival, Departure, and Surface (IADS) traffic management capabilities under the Airspace Technology Demonstration 2 (ATD-2) project. One of the goal of The IADS capabilities in the ATD-2 project is to increase predictability and increase throughput via improving TMI compliance. The IADS capabilities that will impact TMI compliance are built upon previous NASA research, the Precision Departure Release Capability (PDRC). The proposed paper will evaluate the APREQCFR process between ATC Tower and Center and information sharing between ATC Tower and the airline Ramp tower. Subjective measures collected from the HITL surveys (e.g., workload, situational awareness, acceptability, usability) and performance metrics such as TMI, TMAT, and pushback advisory compliance from APREQCFR flights and will be reported
Identification and Characterization of Key Human Performance Issues and Research in the Next Generation Air Transportation System (NextGen)
This report identifies key human-performance-related issues associated with Next Generation Air Transportation System (NextGen) research in the NASA NextGen-Airspace Project. Four Research Focus Areas (RFAs) in the NextGen-Airspace Project - namely Separation Assurance (SA), Airspace Super Density Operations (ASDO), Traffic Flow Management (TFM), and Dynamic Airspace Configuration (DAC) - were examined closely. In the course of the research, it was determined that the identified human performance issues needed to be analyzed in the context of NextGen operations rather than through basic human factors research. The main gaps in human factors research in NextGen were found in the need for accurate identification of key human-systems related issues within the context of specific NextGen concepts and better design of the operational requirements for those concepts. By focusing on human-system related issues for individual concepts, key human performance issues for the four RFAs were identified and described in this report. In addition, mixed equipage airspace with components of two RFAs were characterized to illustrate potential human performance issues that arise from the integration of multiple concepts
Recommended from our members
Volumetric laser endomicroscopy and its application to Barrett's esophagus: results from a 1,000 patient registry.
Volumetric laser endomicroscopy (VLE) uses optical coherence tomography (OCT) for real-time, microscopic cross-sectional imaging. A US-based multi-center registry was constructed to prospectively collect data on patients undergoing upper endoscopy during which a VLE scan was performed. The objective of this registry was to determine usage patterns of VLE in clinical practice and to estimate quantitative and qualitative performance metrics as they are applied to Barrett's esophagus (BE) management. All procedures utilized the NvisionVLE Imaging System (NinePoint Medical, Bedford, MA) which was used by investigators to identify the tissue types present, along with focal areas of concern. Following the VLE procedure, investigators were asked to answer six key questions regarding how VLE impacted each case. Statistical analyses including neoplasia diagnostic yield improvement using VLE was performed. One thousand patients were enrolled across 18 US trial sites from August 2014 through April 2016. In patients with previously diagnosed or suspected BE (894/1000), investigators used VLE and identified areas of concern not seen on white light endoscopy (WLE) in 59% of the procedures. VLE imaging also guided tissue acquisition and treatment in 71% and 54% of procedures, respectively. VLE as an adjunct modality improved the neoplasia diagnostic yield by 55% beyond the standard of care practice. In patients with no prior history of therapy, and without visual findings from other technologies, VLE-guided tissue acquisition increased neoplasia detection over random biopsies by 700%. Registry investigators reported that VLE improved the BE management process when used as an adjunct tissue acquisition and treatment guidance tool. The ability of VLE to image large segments of the esophagus with microscopic cross-sectional detail may provide additional benefits including higher yield biopsies and more efficient tissue acquisition. Clinicaltrials.gov NCT02215291
- …