7,653 research outputs found

    Soil Viruses: A New Hope.

    Get PDF
    As abundant members of microbial communities, viruses impact microbial mortality, carbon and nutrient cycling, and food web dynamics. Although most of our information about viral communities comes from marine systems, evidence is mounting to suggest that viruses are similarly important in soil. Here I outline soil viral metagenomic approaches and the current state of soil viral ecology as a field, and then I highlight existing knowledge gaps that we can begin to fill. We are poised to elucidate soil viral contributions to terrestrial ecosystem processes, considering: the full suite of potential hosts across trophic scales, the ecological impacts of different viral replication strategies, links to economically relevant outcomes like crop productivity, and measurable in situ virus-host population dynamics across spatiotemporal scales and environmental conditions. Soon, we will learn how soil viruses contribute to food webs linked to organic matter decomposition, carbon and nutrient cycling, greenhouse gas emissions, and agricultural productivity

    Conflicting Views on Fair Siting Processes: Evidence from Austria and the U.S.

    Get PDF
    The authors maintain that, by granting legitimacy to different notions of fairness and building on common values such as responsibility, it is possible to design siting procedures that promote social cohesion, trust and a sense of fair play

    Modularity in support of design for re-use

    Get PDF
    We explore the structuring principle of modularity with the objective of analysing its current ability to meet the requirements of a 're-use' centred approach to design. We aim to highlight the correlation's between modular design and 're-use', and argue that it has the potential to aid the little-supported process of 'design-for-re-use'. In fulfilment of this objective we not only identify the requirements of 'design-for-re-use', but also propose how modular design principles can be extended to support 'design-for-re-use'

    Re-using knowledge : why, what and where

    Get PDF
    Previously the 're-use' focus has centred on specific and/or standard parts, more recently however, [standard components] are being developed...to enable both the re-use of the part and the experience associated with that part'. This notion is further extended by Finger who states that 'designers may re-use a prior design in it's entirety,...may re-use an existing shape for a different function, or may re-use a feature from another design'. Reinforcing this notion we currently consider re-use to reflect the utilisation of any knowledge gained from a design activity and not just past designs of artefacts. Our research concerns the improvement of formal 're-use' support and as such we have identified a need to gain a better understanding of how design knowledge can be utilised to support 're-use'. Thus, we discuss the requirements of successful 're-use' and attempt to ascertain within this skeleton: what knowledge can be re-used; how to maximise its' applicability; and where and when it can be utilised in new design

    Recent advances in malaria genomics and epigenomics

    Get PDF
    Malaria continues to impose a significant disease burden on low- and middle-income countries in the tropics. However, revolutionary progress over the last 3 years in nucleic acid sequencing, reverse genetics, and post-genome analyses has generated step changes in our understanding of malaria parasite (Plasmodium spp.) biology and its interactions with its host and vector. Driven by the availability of vast amounts of genome sequence data from Plasmodium species strains, relevant human populations of different ethnicities, and mosquito vectors, researchers can consider any biological component of the malarial process in isolation or in the interactive setting that is infection. In particular, considerable progress has been made in the area of population genomics, with Plasmodium falciparum serving as a highly relevant model. Such studies have demonstrated that genome evolution under strong selective pressure can be detected. These data, combined with reverse genetics, have enabled the identification of the region of the P. falciparum genome that is under selective pressure and the confirmation of the functionality of the mutations in the kelch13 gene that accompany resistance to the major frontline antimalarial, artemisinin. Furthermore, the central role of epigenetic regulation of gene expression and antigenic variation and developmental fate in P. falciparum is becoming ever clearer. This review summarizes recent exciting discoveries that genome technologies have enabled in malaria research and highlights some of their applications to healthcare. The knowledge gained will help to develop surveillance approaches for the emergence or spread of drug resistance and to identify new targets for the development of antimalarial drugs and perhaps vaccines

    The expected sample variance of uncorrelated random variables with a common mean and applications in unbalanced random effects models

    Get PDF
    There is a little-known but very simple generalization of the standard result that for uncorrelated variables with a common mean and variance, the expected sample variance is the marginal variance. The generalization justifies the use of the usual standard error of the sample mean in possibly heteroscedastic situations and motivates some simple estimators for unbalanced linear random effects models. The latter is illustrated for the simple one-way context. --
    • …
    corecore