198 research outputs found

    Organotin Compound Derived from 3-Hydroxy-2-formylpyridine Semicarbazone: Synthesis, Crystal Structure, and Antiproliferative Activity

    Get PDF
    The novel diphenyltin(IV) compound [Ph2(HyFoSc)Sn] (2), where H2HyFoSc (1) is 3-hydroxy-2-formylpyridine semicarbazone, was prepared and characterized by vibrational and NMR (1H, 13C) spectroscopy. The structure of [Ph2(HyFoSc)Sn] was confirmed by single-crystal X-ray crystallography. The doubly deprotonated ligand is coordinated to the tin atom through the enolic-oxygen, the azomethine-nitrogen, and phenolic-oxygen, and so acts as an anionic tridentate ligand with the ONO donors. Two carbon atoms complete the fivefold coordination at the tin(IV) center. Intermolecular hydrogen bonding, C–H → π, and π → π interactions combine to stabilize the crystal structure. Compounds 1 and 2 have been evaluated for antiproliferative activity in vitro against the cells of three human tumor cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A549 (nonsmall cell lung carcinoma), and a mouse fibroblast L-929 cancer cell line

    Synthesis, Characterization and Antiproliferative Activity of the Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) Complexes of 2-(4-Thiazolyl)Benzimidazole (Thiabendazole)

    Get PDF
    Complexes of 2-(4-thiazolyi)benzimidazole (thiabendazole, THBD) with Co(II), Ni(II), Cu(ll) of general formula ML2(NO3)2 H2O and complexes of Pd(II) and Pt(II) of general formula ML2Cl2 H2O have been obtained and characterized by elemental analyses, IR and far IR spectroscopy and magnetic measurements. The X-ray crystal structure of the copper(II) complex has been determined. The in vitro cell proliferation inhibitory activity of these compounds was examined against human cancer cell lines A 549 (lung carcinoma), HCV-29 T (urinary bladder carcinoma), MCF-7 (breast cancer), T47D (breast cancer), MES-SA (uterine carcinoma) and HL-60 (promyelocytic leukemia). Pt-THBD has been found to exhibit an antileukemic activity of the HL-60 line cells matching that of an arbitrary criterion

    3D Raman imaging of systemic endothelial dysfunction in the murine model of metastatic breast cancer

    Get PDF
    It was recently reported in the murine model of metastatic breast cancer (4T1) that tumor progression and development of metastasis is associated with systemic endothelial dysfunction characterized by impaired nitric oxide (NO) production. Using Raman 3D confocal imaging with the analysis of the individual layers of the vascular wall combined with AFM endothelial surface imaging, we demonstrated that metastasis-induced systemic endothelial dysfunction resulted in distinct chemical changes in the endothelium of the aorta. These changes, manifested as a significant increase in the protein content (18 %) and a slight decrease in the lipid content (4 %), were limited to the endothelium and did not occur in the deeper layers of the vascular wall. The altered lipid to protein ratio in the endothelium, although more pronounced in the fixed vascular wall, was also observed in the freshly isolated unfixed vascular wall samples in the aqueous environment (12 and 7 % change of protein and lipid content, respectively). Our results support the finding that the metastasis induces systemic endothelial dysfunction that may contribute to cancer progression

    The effects of 1,4-dimethylpyridine in metastatic prostate cancer in mice

    Get PDF
    BACKGROUND: We previously showed that 1-methylnicotinamide (1-MNA) and its analog 1,4-dimethylpyridine (1,4-DMP) could inhibit the formation of lung metastases and enhance the efficacy of cyclophosphamide-based chemotherapy in the model of spontaneously metastasizing 4T1 mouse mammary gland tumors. In the present study, we aimed to investigate whether the previously observed activity of pyridine compounds pertains also to the prevention and the treatment of metastatic prostate tumors, in a combined chemotherapy with docetaxel. METHODS: Cancer-preventing activity of 1,4-DMP was studied in the model of prostate tumors spontaneously arising in C57BL/6-Tg (TRAMP)8247Ng/J (TRAMP) mice. The efficacy of the combined chemotherapy, comprising simultaneous use of 1,4-DMP and docetaxel, was evaluated in the orthotopic mouse model of human PC-3M-luc2 prostate cancer. The toxicity of the applied treatment was also determined. RESULTS: The development of prostate tumors in TRAMP mice remained unaffected after administration of 1,4-DMP. Similarly, no effect of 1,4-DMP was found on the growth of orthotopically transplanted PC-3M-luc2 tumors. However, when 1,4-DMP was administered along with docetaxel, it enhanced the anticancer activity of the chemotherapy. As a result, in PC-3M-luc2-bearing mice statistically significant inhibition of the tumor growth and lower metastases incidence were observed. The decreased metastatic yield is probably related to the diminished platelet activity observed in mice treated with combined therapeutic regimen. Finally, the combined treatment exhibited lowered side effects accompanying docetaxel administration. CONCLUSIONS: Results presented herein confirm previously published data on the anticancer activity of pyridine compounds and demonstrate that 1,4-DMP may be beneficially implemented into chemotherapy utilizing various cytotoxic agents, directed against multiple metastatic tumor types. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-017-3161-4) contains supplementary material, which is available to authorized users

    New insights into the possible role of bacteriophages in host defense and disease

    Get PDF
    BACKGROUND: While the ability of bacteriophages to kill bacteria is well known and has been used in some centers to combat antibiotics – resistant infections, our knowledge about phage interactions with mammalian cells is very limited and phages have been believed to have no intrinsic tropism for those cells. PRESENTATION OF THE HYPOTHESIS: At least some phages (e.g., T4 coliphage) express Lys-Arg-Gly (KGD) sequence which binds β3 integrins (primarily αIIbβ3). Therefore, phages could bind β3+ cells (platelets, monocytes, some lymphocytes and some neoplastic cells) and downregulate activities of those cells by inhibiting integrin functions. TESTING THE HYPOTHESIS: Binding of KGD+ phages to β3 integrin+ cells may be detected using standard techniques involving phage – mediated bacterial lysis and plaque formation. Furthermore, the binding may be visualized by electron microscopy and fluorescence using labelled phages. Binding specificity can be confirmed with the aid of specific blocking peptides and monoclonal antibodies. In vivo effects of phage – cell interactions may be assessed by examining the possible biological effects of β3 blockade (e.g., anti-metastatic activity). IMPLICATION OF THE HYPOTHESIS: If, indeed, phages can modify functions of β3+ cells (platelets, monocytes, lymphocytes, cancer cells) they could be important biological response modifiers regulating migration and activities of those cells. Such novel understanding of their role could open novel perspectives in their potential use in treatment of cardiovascular and autoimmune disease, graft rejection and cancer

    synthesis biological evaluation and molecular docking studies of new amides of 4 chlorothiocolchicine as anticancer agents

    Get PDF
    Abstract Colchicine belongs to a large group of microtubule polymerization inhibitors. Although the anti-cancer activity of colchicine and its derivatives has been established, none of them has found commercial application in cancer treatment due to side effects. Therefore, we designed and synthesized a series of six triple-modified 4-chlorothiocolchicine analogues with amide moieties and one urea derivative. These novel derivatives were tested against several different cancer cell lines (A549, MCF-7, LoVo, LoVo/DX) and primary acute lymphoblastic leukemia (ALL) cells and they showed activity in the nanomolar range. The obtained IC50 values for novel derivatives were lower than those obtained for unmodified colchicine and common anticancer drugs such as doxorubicin and cisplatin. Further studies of colchicine and selected analogues were undertaken to indicate that they induced apoptotic cell death in ALL-5 cells. We also performed in silico studies to predict binding modes of the 4-chlorothiocolchicine derivatives to different β tubulin isotypes. The results indicate that select triple-modified 4-chlorothiocolchicine derivatives represent highly promising novel cancer chemotherapeutics

    Synthesis, biological evaluation and molecular docking studies of new amides of 4-bromothiocolchicine as anticancer agents

    Get PDF
    Abstract Colchicine is the major alkaloid isolated from the plant Colchicum autumnale, which shows strong therapeutic effects towards different types of cancer. However, due to the toxicity of colchicine towards normal cells its application is limited. To address this issue we synthesized a series of seven triple-modified 4-bromothiocolchicine analogues with amide moieties. These novel derivatives were active in the nanomolar range against several different cancer cell lines and primary acute lymphoblastic leukemia cells, specifically compounds: 5 – 9 against primary ALL-5 (IC50 = 5.3 – 14 nM), 5, 7– 9 against A549 (IC50 = 10 nM), 5, 7 – 9 against MCF-7 (IC50 = 11 nM), 5 – 9 against LoVo (IC50 = 7 – 12 nM), and 5, 7 – 9 against LoVo/DX (IC50 = 48 – 87 nM). These IC50 values were lower than those obtained for unmodified colchicine and common anticancer drugs such as doxorubicin and cisplatin. Further studies revealed that colchicine and selected analogues induced characteristics of apoptotic cell death but manifested their effects in different phases of the cell cycle in MCF-7 versus ALL-5 cells. Specifically, while colchicine and the studied derivatives arrested MCF-7 cells in mitosis, very little mitotically arrested ALL-5 cells were observed, suggesting effects were manifest instead in interphase. We also developed an in silico model of the mode of binding of these compounds to their primary target, β-tubulin. We conducted a correlation analysis (linear regression) between the calculated binding energies of colchicine derivatives and their anti-proliferative activity, and determined that the obtained correlation coefficients strongly depend on the type of cells used

    The toxicokinetic profile of Dex40-GTMAC3 : a novel polysaccharide candidate for reversal of unfractionated heparin

    Get PDF
    Though protamine sulfate is the only approved antidote of unfractionated heparin (UFH), yet may produce life threatening side effects such as systemic hypotension, catastrophic pulmonary vasoconstriction or allergic reactions. We have described 40 kDa dextrans (Dex40) substituted with glycidyltrimethylammonium chloride (GTMAC) as effective, immunogenically and hemodynamically neutral inhibitors of UFH. The aim of the present study was to evaluate in mice and rats toxicokinetic profile of the most promising polymer – Dex40-GTMAC3. Polymer was rapidly eliminated with a half-time of 12.5±3.0 min in Wistar rats, and was mainly distributed to the kidneys and liver in mice. The safety studies included the measurement of blood count and blood biochemistry, erythrocyte osmotic fragility and the evaluation of the histological alterations in kidneys, liver and lungs of mice and rats in acute and chronic experiments. We found that Dex40-GTMAC3 is not only effective but also very well tolerated. Additionally, we found that protamine may cause overt hemolysis with appearance of permanent changes in the liver and kidneys. In summary, fast renal clearance behavior and generally low tissue accumulation of Dex40-GTMAC3 is likely to contribute to its superior to protamine biocompatibility. Intravenous administration of therapeutic doses to living animals does not result in the immunogenic, hemodynamic, blood and organ toxicity. Dex40-GTMAC3 seems to be a promising effective and safe candidate for further clinical development as new UFH reversal agent
    corecore