60 research outputs found

    Sensitivity of Noninvasive Prenatal Detection of Fetal Aneuploidy from Maternal Plasma Using Shotgun Sequencing Is Limited Only by Counting Statistics

    Get PDF
    We recently demonstrated noninvasive detection of fetal aneuploidy by shotgun sequencing cell-free DNA in maternal plasma using next-generation high throughput sequencer. However, GC bias introduced by the sequencer placed a practical limit on the sensitivity of aneuploidy detection. In this study, we describe a method to computationally remove GC bias in short read sequencing data by applying weight to each sequenced read based on local genomic GC content. We show that sensitivity is limited only by counting statistics and that sensitivity can be increased to arbitrary precision in sample containing arbitrarily small fraction of fetal DNA simply by sequencing more DNA molecules. High throughput shotgun sequencing of maternal plasma DNA should therefore enable noninvasive diagnosis of any type of fetal aneuploidy

    Generation of Micronuclei during Interphase by Coupling between Cytoplasmic Membrane Blebbing and Nuclear Budding

    Get PDF
    Micronucleation, mediated by interphase nuclear budding, has been repeatedly suggested, but the process is still enigmatic. In the present study, we confirmed the previous observation that there are lamin B1-negative micronuclei in addition to the positive ones. A large cytoplasmic bleb was found to frequently entrap lamin B1-negative micronuclei, which were connected to the nucleus by a thin chromatin stalk. At the bottom of the stalk, the nuclear lamin B1 structure appeared broken. Chromatin extrusion through lamina breaks has been referred to as herniation or a blister of the nucleus, and has been observed after the expression of viral proteins. A cell line in which extrachromosomal double minutes and lamin B1 protein were simultaneously visualized in different colors in live cells was established. By using these cells, time-lapse microscopy revealed that cytoplasmic membrane blebbing occurred simultaneously with the extrusion of nuclear content, which generated lamin B1-negative micronuclei during interphase. Furthermore, activation of cytoplasmic membrane blebbing by the addition of fresh serum or camptothecin induced nuclear budding within 1 to 10 minutes, which suggested that blebbing might be the cause of the budding. After the induction of blebbing, the frequency of lamin-negative micronuclei increased. The budding was most frequent during S phase and more efficiently entrapped small extrachromosomal chromatin than the large chromosome arm. Based on these results, we suggest a novel mechanism in which cytoplasmic membrane dynamics pulls the chromatin out of the nucleus through the lamina break. Evidence for such a mechanism was obtained in certain cancer cell lines including human COLO 320 and HeLa. The mechanism could significantly perturb the genome and influence cancer cell phenotypes

    Differential Control of Notch1 Gene Transcription by Klf4 and Sp3 Transcription Factors in Normal versus Cancer-Derived Keratinocytes

    Get PDF
    In specific cell types like keratinocytes, Notch signaling plays an important pro-differentiation and tumor suppressing function, with down-modulation of the Notch1 gene being associated with cancer development. Besides being controlled by p53, little else is known on regulation of Notch1 gene expression in this context. We report here that transcription of this gene is driven by a TATA-less “sharp peak” promoter and that the minimal functional region of this promoter, which extends from the −342 bp position to the initiation codon, is differentially active in normal versus cancer cells. This GC rich region lacks p53 binding sites, but binds Klf4 and Sp3. This finding is likely to be of biological significance, as Klf4 and, to a lesser extent, Sp3 are up-regulated in a number of cancer cells where Notch1 expression is down-modulated, and Klf4 over-expression in normal cells is sufficient to down-modulate Notch1 gene transcription. The combined knock-down of Klf4 and Sp3 was necessary for the reverse effect of increasing Notch1 transcription, consistent with the two factors exerting an overlapping repressor function through their binding to the Notch1 promoter

    Innate Structure of DNA Foci Restricts the Mixing of DNA from Different Chromosome Territories

    Get PDF
    The distribution of chromatin within the mammalian nucleus is constrained by its organization into chromosome territories (CTs). However, recent studies have suggested that promiscuous intra- and inter-chromosomal interactions play fundamental roles in regulating chromatin function and so might define the spatial integrity of CTs. In order to test the extent of DNA mixing between CTs, DNA foci of individual CTs were labeled in living cells following incorporation of Alexa-488 and Cy-3 conjugated replication precursor analogues during consecutive cell cycles. Uniquely labeled chromatin domains, resolved following random mitotic segregation, were visualized as discrete structures with defined borders. At the level of resolution analysed, evidence for mixing of chromatin from adjacent domains was only apparent within the surface volumes where neighboring CTs touched. However, while less than 1% of the nuclear volume represented domains of inter-chromosomal mixing, the dynamic plasticity of DNA foci within individual CTs allows continual transformation of CT structure so that different domains of chromatin mixing evolve over time. Notably, chromatin mixing at the boundaries of adjacent CTs had little impact on the innate structural properties of DNA foci. However, when TSA was used to alter the extent of histone acetylation changes in chromatin correlated with increased chromatin mixing. We propose that DNA foci maintain a structural integrity that restricts widespread mixing of DNA and discuss how the potential to dynamically remodel genome organization might alter during cell differentiation

    γ-Secretase Dependent Production of Intracellular Domains Is Reduced in Adult Compared to Embryonic Rat Brain Membranes

    Get PDF
    BACKGROUND: gamma-Secretase is an intramembrane aspartyl protease whose cleavage of the amyloid precursor protein (APP) generates the amyloid beta-peptide (Abeta) and the APP intracellular domain. Abeta is widely believed to have a causative role in Alzheimer's disease pathogenesis, and therefore modulation of gamma-secretase activity has become a therapeutic goal. Besides APP, more than 50 substrates of gamma-secretase with different cellular functions during embryogenesis as well as adulthood have been revealed. Prior to gamma-secretase cleavage, substrates are ectodomain shedded, producing membrane bound C-terminal fragments (CTFs). PRINCIPAL FINDINGS: Here, we investigated gamma-secretase cleavage of five substrates; APP, Notch1, N-cadherin, ephrinB and p75 neurotrophin receptor (p75-NTR) in membranes isolated from embryonic, young or old adult rat brain by analyzing the release of the corresponding intracellular domains (ICDs) or Abeta40 by western blot analysis and ELISA respectively. The highest levels of all ICDs and Abeta were produced by embryonic membranes. In adult rat brain only cleavage of APP and Notch1 could be detected and the Abeta40 and ICD production from these substrates was similar in young and old adult rat brain. The CTF levels of Notch1, N-cadherin, ephrinB and p75-NTR were also clearly decreased in the adult brain compared to embryonic brain, whereas the APP CTF levels were only slightly decreased. CONCLUSIONS: In summary our data suggests that gamma-secretase dependent ICD production is down-regulated in the adult brain compared to embryonic brain. In addition, the present approach may be useful for evaluating the specificity of gamma-secretase inhibitors

    Phosphorylation-Mediated Control of Histone Chaperone ASF1 Levels by Tousled-Like Kinases

    Get PDF
    Histone chaperones are at the hub of a diverse interaction networks integrating a plethora of chromatin modifying activities. Histone H3/H4 chaperone ASF1 is a target for cell-cycle regulated Tousled-like kinases (TLKs) and both proteins cooperate during chromatin replication. However, the precise role of post-translational modification of ASF1 remained unclear. Here, we identify the TLK phosphorylation sites for both Drosophila and human ASF1 proteins. Loss of TLK-mediated phosphorylation triggers hASF1a and dASF1 degradation by proteasome-dependent and independent mechanisms respectively. Consistent with this notion, introduction of phosphorylation-mimicking mutants inhibits hASF1a and dASF1 degradation. Human hASF1b is also targeted for proteasome-dependent degradation, but its stability is not affected by phosphorylation indicating that other mechanisms are likely to be involved in control of hASF1b levels. Together, these results suggest that ASF1 cellular levels are tightly controlled by distinct pathways and provide a molecular mechanism for post-translational regulation of dASF1 and hASF1a by TLK kinases

    Biphasic Myopathic Phenotype of Mouse DUX, an ORF within Conserved FSHD-Related Repeats

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is caused by contractions of D4Z4 repeats at 4q35.2 thought to induce misregulation of nearby genes, one of which, DUX4, is actually localized within each repeat. A conserved ORF (mDUX), embedded within D4Z4-like repeats, encoding a double-homeodomain protein, was recently identified on mouse chromosome 10. We show here that high level mDUX expression induces myoblast death, while low non-toxic levels block myogenic differentiation by down-regulating MyoD and Myf5. Toxicity and MyoD/Myf5 expression changes were competitively reversed by overexpression of Pax3 or Pax7, implying mechanistic similarities with the anti-myogenic activity of human DUX4. We tested the effect of mDUX expression on Xenopus development, and found that global overexpression led to abnormalities in gastrulation. When targeted unilaterally into blastomeres fated to become tail muscle in 16-cell embryos, mDUX caused markedly reduced tail myogenesis on the injected side. These novel cell and animal models highlight the myopathic nature of sequences within the FSHD-related repeat array

    The Nuclear Pore Complex Mediates Binding of the Mig1 Repressor to Target Promoters

    Get PDF
    All eukaryotic cells alter their transcriptional program in response to the sugar glucose. In Saccharomyces cerevisiae, the best-studied downstream effector of this response is the glucose-regulated repressor Mig1. We show here that nuclear pore complexes also contribute to glucose-regulated gene expression. NPCs participate in glucose-responsive repression by physically interacting with Mig1 and mediating its function independently of nucleocytoplasmic transport. Surprisingly, despite its abundant presence in the nucleus of glucose-grown nup120Δ or nup133Δ cells, Mig1 has lost its ability to interact with target promoters. The glucose repression defect in the absence of these nuclear pore components therefore appears to result from the failure of Mig1 to access its consensus recognition sites in genomic DNA. We propose that the NPC contributes to both repression and activation at the level of transcription

    Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences

    Get PDF
    Orofacial malformations resulting from genetic and/or environmental causes are frequent human birth defects yet their etiology is often unclear because of insufficient information concerning the molecular, cellular and morphogenetic processes responsible for normal facial development. We have, therefore, derived a comprehensive expression dataset for mouse orofacial development, interrogating three distinct regions – the mandibular, maxillary and frontonasal prominences. To capture the dynamic changes in the transcriptome during face formation, we sampled five time points between E10.5–E12.5, spanning the developmental period from establishment of the prominences to their fusion to form the mature facial platform. Seven independent biological replicates were used for each sample ensuring robustness and quality of the dataset. Here, we provide a general overview of the dataset, characterizing aspects of gene expression changes at both the spatial and temporal level. Considerable coordinate regulation occurs across the three prominences during this period of facial growth and morphogenesis, with a switch from expression of genes involved in cell proliferation to those associated with differentiation. An accompanying shift in the expression of polycomb and trithorax genes presumably maintains appropriate patterns of gene expression in precursor or differentiated cells, respectively. Superimposed on the many coordinated changes are prominence-specific differences in the expression of genes encoding transcription factors, extracellular matrix components, and signaling molecules. Thus, the elaboration of each prominence will be driven by particular combinations of transcription factors coupled with specific cell:cell and cell:matrix interactions. The dataset also reveals several prominence-specific genes not previously associated with orofacial development, a subset of which we externally validate. Several of these latter genes are components of bidirectional transcription units that likely share cis-acting sequences with well-characterized genes. Overall, our studies provide a valuable resource for probing orofacial development and a robust dataset for bioinformatic analysis of spatial and temporal gene expression changes during embryogenesis

    Parvovirus Induced Alterations in Nuclear Architecture and Dynamics

    Get PDF
    The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications
    corecore