20 research outputs found

    Stimuli-Responsive Codelivery System-Embedded Polymeric Nanofibers with Synergistic Effects of Growth Factors and Low-Intensity Pulsed Ultrasound to Enhance Osteogenesis Properties

    Get PDF
    The present work aims to develop optimized scaffolds for bone repair by incorporating mesoporous nanoparticles into them, thereby combining bioactive factors for cell growth and preventing rapid release or loss of effectiveness. We synthesized biocompatible and biodegradable scaffolds designed for the controlled codelivery of curcumin (CUR) and recombinant human bone morphogenic protein-2 (rhBMP-2). Active agents in dendritic silica/titania mesoporous nanoparticles (DSTNs) were incorporated at different weight percentages (0, 2, 5, 7, 9, and 10 wt %) into a matrix of polycaprolactone (PCL) and polyethylene glycol (PEG) nanofibers, forming the CUR-BMP-2@DSTNs/PCL–PEG delivery system (S0, S2, S5, S7, S9, and S10, respectively, with the number showing the weight percentage). To enhance the formation process, the system was treated using low-intensity pulsed ultrasound (LIPUS). Different advanced methods were employed to assess the physical, chemical, and mechanical characteristics of the fabricated scaffolds, all confirming that incorporating the nanoparticles improves their mechanical and structural properties. Their hydrophilicity increased by approximately 25%, leading to ca. 53% enhancement in their water absorption capacity. Furthermore, we observed a sustained release of approximately 97% for CUR and 70% for BMP-2 for the S7 (scaffold with 7 wt % DSTNs) over 28 days, which was further enhanced using ultrasound. In vitro studies demonstrated accelerated scaffold biodegradation, with the highest level observed in S7 scaffolds, approximately three times higher than the control group. Moreover, the cell viability and proliferation on DSTNs-containing scaffolds increased when compared to the control group. Overall, our study presents a promising nanocomposite scaffold design with notable improvements in structural, mechanical, and biological properties compared to the control group, along with controlled and sustained drug release capabilities. This makes the scaffold a compelling candidate for advanced bone tissue engineering and regenerative therapies

    Review of the Current Knowledge on the Role of Stem Cell Transplantation in Neurorehabilitation

    No full text
    The management involving stem cell (SC) therapy along with physiotherapy offers tremendous chance for patients after spinal cord injury (SCI), traumatic brain injury (TBI), stroke, etc. However, there are still only a limited number of reports assessing the impact of stem cells (SCs) on the rehabilitation process and/or the results of the simultaneous use of SC and rehabilitation. Additionally, since there is still not enough convincing evidence about the effect of SCT on humans, e.g., in stroke, there have been no studies conducted concerning rehabilitation program formation and expected outcomes. It has been shown that bone marrow-derived mesenchymal stem cell (BMSCs) transplantation in rats combined with hyperbaric oxygen therapy (HBO) can promote the functional recovery of hind limbs after SCI. An anti-inflammatory effect has been shown. One case study showed that, after the simultaneous use of SCT and rehabilitation, an SCI patient progressed from ASIA Grade A to ASIA Grade C. Such promising data in the case of complete tetraplegia could be a breakthrough in the treatment of neurologic disorders in humans. Although SCT appears as a promising method for the treatment of neurological conditions, e.g., complete tetraplegia, much work should be done towards the development of rehabilitation protocols

    Review of the Current Knowledge on the Role of Stem Cell Transplantation in Neurorehabilitation

    No full text
    The management involving stem cell (SC) therapy along with physiotherapy offers tremendous chance for patients after spinal cord injury (SCI), traumatic brain injury (TBI), stroke, etc. However, there are still only a limited number of reports assessing the impact of stem cells (SCs) on the rehabilitation process and/or the results of the simultaneous use of SC and rehabilitation. Additionally, since there is still not enough convincing evidence about the effect of SCT on humans, e.g., in stroke, there have been no studies conducted concerning rehabilitation program formation and expected outcomes. It has been shown that bone marrow-derived mesenchymal stem cell (BMSCs) transplantation in rats combined with hyperbaric oxygen therapy (HBO) can promote the functional recovery of hind limbs after SCI. An anti-inflammatory effect has been shown. One case study showed that, after the simultaneous use of SCT and rehabilitation, an SCI patient progressed from ASIA Grade A to ASIA Grade C. Such promising data in the case of complete tetraplegia could be a breakthrough in the treatment of neurologic disorders in humans. Although SCT appears as a promising method for the treatment of neurological conditions, e.g., complete tetraplegia, much work should be done towards the development of rehabilitation protocols

    Stimuli-responsive Co-delivery System Embedded Polymeric Nanofibers with Synergistic Effects of Growth Factors and Low-intensity Pulsed Ultrasound to Enhance Osteogenesis Properties

    Get PDF
    Synthetic biomaterial scaffolds with a single component cannot provide all the prerequisites for efficient tissue regeneration. Direct loading of bioactive factors into these scaffolds may lead to an unwanted burst release or impaired activities. The combination of nanomaterials with scaffolds can offer tremendous potential and opportunities to address such problems. In this study we aimed to provide an ideal scaffold, that can be implanted in the bone defect area, allowing effective cell adhesion, and directional differentiation to develop new tissues. To achieve this goal, we designed and synthesized a series of biocompatible and biodegradable scaffolds, for controlled co-delivery of curcumin (CUR) and recombinant human bone morphogenic protein-2 (rhBMP-2) loaded Dendritic Silica/Titania Mesoporous incorporated PCL/PEG nanofiber (CUR-rhBMP2@DSTNs/PCL-PEG). The scaffolds were also subjected to low-intensity pulsed ultrasound (LIPUS) stimulation to improve new bone formation. The weight ratios of polymers and nanoparticles were optimized to provide desirable textural porosity, pore size, fiber diameter, and mechanical features. Advanced characterization methods were used to investigate the surface structure, thermal stability, chemical composition, and crystalline structure of the drug/nanocarrier and scaffolds. The in vitro release studies of CUR and BMP-2 from the scaffolds under different conditions (physical and ultrasound irradiation) provide information on the drug release kinetics and efficiency of the US-stimuli delivery system. The results show that the system can deliver drugs in response to ultrasound irradiation, making it a promising system for targeted drug delivery in the future.In addition to evaluating drug release, we assessed the in vitro biocompatibility of the scaffolds. Specifically, we studied cell viability, mineralization, and the expression of osteogenic markers. Our findings indicated that the scaffold, in combination with ultrasound stimulation and growth factor release, exhibited potential for inducing osteogenic differentiation. Furthermore, the incorporation of silica/titania-based nanoparticles enhanced mineralization and the expression of osteogenic markers.<br/

    Effective treatment of Clostridioides difficile infection improves survival and affects graft-versus-host disease: a multicenter study by the Polish Adult Leukemia Group

    No full text
    Abstract Clostridioides difficile infection (CDI) is the most common cause of infectious diarrhea after allogeneic hematopoietic cell transplantation (allo-HCT). The impact of CDI and its treatment on allo-HCT outcomes and graft-versus-host disease (GVHD), including gastrointestinal GVHD (GI-GVHD) is not well established. This multicenter study assessed real-life data on the first-line treatment of CDI and its impact on allo-HCT outcomes. Retrospective and prospective data of patients with CDI after allo-HCT were assessed. We noted statistically significant increase in the incidence of acute GVHD and acute GI-GVHD after CDI (P = 0.005 and P = 0.016, respectively). The first-line treatment for CDI included metronidazole in 34 patients, vancomycin in 64, and combination therapy in 10. Treatment failure was more common with metronidazole than vancomycin (38.2% vs. 6.2%; P < 0.001). The need to administer second-line treatment was associated with the occurrence or exacerbation of GVHD (P < 0.05) and GI-GVHD (P < 0.001) and reduced overall survival (P < 0.05). In the multivariate analysis, the risk of death was associated with acute GVHD presence before CDI (hazard ratio [HR], 3.19; P = 0.009) and the need to switch to second-line treatment (HR, 4.83; P < 0.001). The efficacy of the initial CDI treatment affects survival and occurrence of immune-mediated GI-GVHD after allo-HCT. Therefore, agents with higher efficacy than metronidazole (vancomycin or fidaxomicin) should be administered as the first-line treatment

    Anticancer Effects of Abietane Diterpene 7α-Acetoxy-6ÎČ-hydroxyroyleanone from <i>Plectranthus grandidentatus</i> and Its Semi-Synthetic Analogs: An In Silico Computational Approach

    No full text
    The abietane diterpenoid 7α-acetoxy-6ÎČ-hydroxyroyleanone (Roy) isolated from Plectranthus grandidentatus demonstrates cytotoxicity across numerous cancer cell lines. To potentiate anticancer attributes, a series of semi-synthetic Roy derivatives were generated and examined computationally. ADMET predictions were used to evaluate drug-likeness and toxicity risks. The antineoplastic potential was quantified by PASS. The DFT models were used to assess their reactivity and stability. Molecular docking determined cancer-related protein binding. MS simulations examined ligand–protein stability. Additionally, network pharmacology was used to identify potential targets and signaling pathways. Favorable ADME attributes and acceptable toxicity profiles were determined for all compounds. Strong anticancer potential was shown across derivatives (Pa 0.819–0.879). Strategic modifications altered HOMO–LUMO gaps (3.39–3.79 eV) and global reactivity indices. Favorable binding was revealed against cyclin-dependent kinases, BCL-2, caspases, receptor tyrosine kinases, and p53. The ligand exhibited a stable binding pose in MD simulations. Network analysis revealed involvement in cancer-related pathways. In silico evaluations predicted Roy and derivatives as effective molecules with anticancer properties. Experimental progress is warranted to realize their chemotherapeutic potential

    Molecular Recognition of Brucella A and M Antigens Dissected by Synthetic Oligosaccharide Glycoconjugates Leads to a Disaccharide Diagnostic for Brucellosis

    No full text
    The cell wall O-polysaccharides of pathogenic Brucella species are homopolymers of the rare sugar 4,6-dideoxy-4-formamido-α-d-mannopyranose. Despite the apparent simplicity of the polysaccharide it appears to be a “block copolymer” composed of A and M polysaccharide sequences expressed as a single molecule. The simultaneous presence of both in the cell wall has complicated the understanding of the molecular recognition of these antigens by antibodies present in the serum of infected animals and humans and by monoclonal antibodies. Since presumptive diagnosis of brucellosis, a serious disease in domestic livestock, wild animals, and humans, is based on detection of these antibodies it is important to separate the two antigenic epitopes, one of which is also found in other bacteria. Chemical synthesis provides the only means to achieve this outcome. A series of six oligosaccharides from di to hexasaccharides <b>1</b>–<b>6</b> were synthesized and conjugated to proteins to provide glycoconjugate antigens and conjugate vaccines. These chemically defined antigens identified the M antigenic determinant and provided a structural basis for understanding the fine specificity of monoclonal and polyclonal antibodies that bind the M antigen. This resulted in the discovery of a disaccharide that shows considerable potential as an unambiguous diagnostic antigen for detecting brucellosis in humans and animals and two hexasaccharide conjugate vaccine candidates that produce high levels of O-polysaccharide specific antibodies in mice
    corecore