12 research outputs found
Oxysterol-Binding Protein-1 (OSBP1) Modulates Processing and Trafficking of the Amyloid Precursor Protein
BACKGROUND
Evidence from biochemical, epidemiological and genetic findings indicates that cholesterol levels are linked to amyloid-β (Aβ) production and Alzheimer's disease (AD). Oxysterols, which are cholesterol-derived ligands of the liver X receptors (LXRs) and oxysterol binding proteins, strongly regulate the processing of amyloid precursor protein (APP). Although LXRs have been studied extensively, little is known about the biology of oxysterol binding proteins. Oxysterol-binding protein 1 (OSBP1) is a member of a family of sterol-binding proteins with roles in lipid metabolism, regulation of secretory vesicle generation and signal transduction, and it is thought that these proteins may act as sterol sensors to control a variety of sterol-dependent cellular processes.
RESULTS
We investigated whether OSBP1 was involved in regulating APP processing and found that overexpression of OSBP1 downregulated the amyloidogenic processing of APP, while OSBP1 knockdown had the opposite effect. In addition, we found that OSBP1 altered the trafficking of APP-Notch2 dimers by causing their accumulation in the Golgi, an effect that could be reversed by treating cells with OSBP1 ligand, 25-hydroxycholesterol.
CONCLUSION
These results suggest that OSBP1 could play a role in linking cholesterol metabolism with intracellular APP trafficking and Aβ production, and more importantly indicate that OSBP1 could provide an alternative target for Aβ-directed therapeutic.National Institute on Aging (AG/NS17485
Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury.
BACKGROUND: Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine with both injurious and protective functions, which are thought to diverge at the level of its two cell surface receptors, TNFR1 and TNFR2. In the setting of acute injury, selective inhibition of TNFR1 is predicted to attenuate the cell death and inflammation associated with TNF-α, while sparing or potentiating the protective effects of TNFR2 signalling. We developed a potent and selective antagonist of TNFR1 (GSK1995057) using a novel domain antibody (dAb) therapeutic and assessed its efficacy in vitro, in vivo and in a clinical trial involving healthy human subjects. METHODS: We investigated the in vitro effects of GSK1995057 on human pulmonary microvascular endothelial cells (HMVEC-L) and then assessed the effects of pretreatment with nebulised GSK1995057 in a non-human primate model of acute lung injury. We then tested translation to humans by investigating the effects of a single nebulised dose of GSK1995057 in healthy humans (n=37) in a randomised controlled clinical trial in which subjects were subsequently exposed to inhaled endotoxin. RESULTS: Selective inhibition of TNFR1 signalling potently inhibited cytokine and neutrophil adhesion molecule expression in activated HMVEC-L monolayers in vitro (P<0.01 and P<0.001, respectively), and also significantly attenuated inflammation and signs of lung injury in non-human primates (P<0.01 in all cases). In a randomised, placebo-controlled trial of nebulised GSK1995057 in 37 healthy humans challenged with a low dose of inhaled endotoxin, treatment with GSK1995057 attenuated pulmonary neutrophilia, inflammatory cytokine release (P<0.01 in all cases) and signs of endothelial injury (P<0.05) in bronchoalveolar lavage and serum samples. CONCLUSION: These data support the potential for pulmonary delivery of a selective TNFR1 dAb as a novel therapeutic approach for the prevention of acute respiratory distress syndrome. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT01587807
Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein
Background Evidence from biochemical, epidemiological and genetic findings indicates that cholesterol levels are linked to amyloid-β (Aβ) production and Alzheimer's disease (AD). Oxysterols, which are cholesterol-derived ligands of the liver X receptors (LXRs) and oxysterol binding proteins, strongly regulate the processing of amyloid precursor protein (APP). Although LXRs have been studied extensively, little is known about the biology of oxysterol binding proteins. Oxysterol-binding protein 1 (OSBP1) is a member of a family of sterol-binding proteins with roles in lipid metabolism, regulation of secretory vesicle generation and signal transduction, and it is thought that these proteins may act as sterol sensors to control a variety of sterol-dependent cellular processes. Results We investigated whether OSBP1 was involved in regulating APP processing and found that overexpression of OSBP1 downregulated the amyloidogenic processing of APP, while OSBP1 knockdown had the opposite effect. In addition, we found that OSBP1 altered the trafficking of APP-Notch2 dimers by causing their accumulation in the Golgi, an effect that could be reversed by treating cells with OSBP1 ligand, 25-hydroxycholesterol. Conclusion These results suggest that OSBP1 could play a role in linking cholesterol metabolism with intracellular APP trafficking and Aβ production, and more importantly indicate that OSBP1 could provide an alternative target for Aβ-directed therapeutic.</p
, H4 cells stably overexpressing APP (H4-APP) were transfected with OSBP1 cDNA as described in Methods
Cell lysates from untransfected cells and those transiently overexpressing OSBP1 were immunoblotted with antibodies to the C-terminus of APP (upper panel), c-myc (middle panel), which detects the myc-tagged OSBP1, and actin, used for loading control. , OSBP1 overexpression decreased PMA-regulated sAPPα secreted levels. Cells were treated with PMA as described in Methods. Proteins from cell lysates and media were separated by SDS-PAGE and lysates were immunoblotted with anti-myc antibody (upper panel). Media samples were analyzed for sAPPα using the 6E10 antibody (middle panel). Cell lysates were also analyzed for CTFα using an antibody to the C-terminus of APP (lower panel). Densitometric analysis of Western blots is shown on the right. *p < 0.05 and **p < 0.01 by Student's test.<p><b>Copyright information:</b></p><p>Taken from "Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein"</p><p>http://www.molecularneurodegeneration.com/content/3/1/5</p><p>Molecular Neurodegeneration 2008;3():5-5.</p><p>Published online 18 Mar 2008</p><p>PMCID:PMC2323375.</p><p></p
Cells were transfected with the 3 siRNA sequences as described in Methods
Non-targeting siRNA (NT) and siRNA against APP and BACE1 were used as controls. , Media samples were assayed for Aβ40 and Aβ42 by ELISA. , Lysates from HEK-APPNFEV cells were separated by SDS-PAGE and immunoblotted with an antibody to the APP C-terminus for detection of full length APP and APP-CTFs, and to actin as loading control. , Lysates from HEK-APPNFEV cells and immunoblotted with antibodies to OSBP1 and actin to confirm effective knockdown. *p < 0.01 and **p < 0.05 by ANOVA.<p><b>Copyright information:</b></p><p>Taken from "Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein"</p><p>http://www.molecularneurodegeneration.com/content/3/1/5</p><p>Molecular Neurodegeneration 2008;3():5-5.</p><p>Published online 18 Mar 2008</p><p>PMCID:PMC2323375.</p><p></p
Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib
There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8+ T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses
Rac1 Protein Rescues Neurite Retraction Caused by G2019S Leucine-rich Repeat Kinase 2 (LRRK2)*
Mutations in leucine-rich repeat kinase 2 (LRRK2) are currently the most common genetic cause of familial late-onset Parkinson disease, which is clinically indistinguishable from idiopathic disease. The most common pathological mutation in LRRK2, G2019S LRRK2, is known to cause neurite retraction. However, molecular mechanisms underlying regulation of neurite length by LRRK2 are unknown. Here, we demonstrate a novel interaction between LRRK2 and the Rho GTPase, Rac1, which plays a critical role in actin cytoskeleton remodeling necessary for the maintenance of neurite morphology. LRRK2 binds strongly to endogenous or expressed Rac1, while showing weak binding to Cdc42 and no binding to RhoA. Co-expression with LRRK2 increases Rac1 activity, as shown by increased binding to the p21-activated kinase, which modulates actin cytoskeletal dynamics. LRRK2 constructs carrying mutations that inactivate the kinase or GTPase activities do not activate Rac1. Interestingly, LRRK2 does not increase levels of membrane-bound Rac1 but dramatically changes the cellular localization of Rac1, causing polarization, which is augmented further when LRRK2 is co-expressed with constitutively active Rac1. Four different disease-related mutations in LRRK2 altered binding to Rac1, with the G2019S and R1441C LRRK2 mutations attenuating Rac1 binding and the Y1699C and I2020T LRRK2 mutations increasing binding. Co-expressing Rac1 in SH-SY5Y cells rescues the G2019S mutant phenotype of neurite retraction. We hypothesize that pathological mutations in LRRK2 attenuates activation of Rac1, causing disassembly of actin filaments, leading to neurite retraction. The interactions between LRRK2 and Rho GTPases provide a novel pathway through which LRRK2 might modulate cellular dynamics and contribute to the pathophysiology of Parkinson disease