22 research outputs found

    Lycopene-rich extract from red guava ( Psidium guajava L.) displays cytotoxic effect against human breast adenocarcinoma cell line MCF-7 via an apoptotic-like pathway

    Get PDF
    This study investigated a lycopene-rich extract from red guava (LEG) for its chemical composition using spectrophotometry, mass spectrometry, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), and computational studies. The cytotoxic activity of LEG and the underlying mechanism was studied in human breast adenocarcinoma cells (MCF-7), murine fibroblast cells (NIH-3T3), BALB/c murine peritoneal macrophages, and sheep blood erythrocytes by evaluating the cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and flow cytometry. Spectrophotometry analysis showed that LEG contained 20% of lycopene per extract dry weight. Experimental and theoretical ATR-FTIR suggests the presence of lycopene, whereas MS/MS spectra obtained after fragmentation of the molecular ion [M]+• of 536.4364 show fragment ions at m/z 269.2259, 375.3034, 444.3788, and 467.3658, corroborating the presence of lycopene mostly related to all-trans configuration. Treatment with LEG (1600 to 6.25μg/mL) for 24 and 72h significantly affected the viability of MCF-7 cells (mean half maximal inhibitory concentration [IC50]=29.85 and 5.964μg/mL, respectively) but not NIH-3T3 cells (IC50=1579 and 911.5μg/mL, respectively). Furthermore LEG at concentrations from 800 to 6.25μg/mL presented low cytotoxicity against BALB/c peritoneal macrophages (IC50≥800μg/mL) and no hemolytic activity. LEG (400 and 800μg/mL) caused reduction in the cell proliferation and induced cell cycle arrest, DNA fragmentation, modifications in the mitochondrial membrane potential, and morphologic changes related to granularity and size in MCF-7 cells; however, it failed to cause any significant damage to the cell membrane or display necrosis or traditional apoptosis. In conclusion, LEG was able to induce cytostatic and cytotoxic effects on breast cancer cells probably via induction of an apoptotic-like pathway.The authors acknowledge the computational time provided by CENAPAD/SP on the project proj697. Alexandra Plácido is gratefully to FCT by her grant SFRH/BD/97995/2013, financed by POPH–QREN–Tipologia 4.1–Formação Avançada, subsidized by Fundo Social Europeu and Ministério da Ciência, Tecnologia e Ensino Superior. The work at REQUIMTE/LAQV received financial support from the European Union (FEDER funds through COMPETE) and National Funds (FCT) through project UID/QUI/50006/2013. Adriany das G. N. Amorim is grateful to CAPES by for the doctoral fellowship process no. 99999.004236/2014-09 in Federal University of Piauí (UFPI). Eder A. Barbosa is grateful to PNPD/CAPES for its post-doctoral fellowship.info:eu-repo/semantics/publishedVersio

    Quaternized cashew gum: An anti-staphylococcal and biocompatible cationic polymer for biotechnological applications

    Get PDF
    Chemical modifications to cashew gum (CG) structure have been previously reported to obtain new physicochemical characteristics, however until now there were no reports of modifications by introduction of new functional groups to add cationic character. This study presents a quaternization route for CG using a quaternary ammonium reagent. The chemical features of the quaternized cashew gum derivatives (QCG) were analyzed by: FTIR, elemental analysis, degree of substitution, Zeta potential, 1H NMR and 1H-13C correlation (HSQC). QCG were evaluated for their anti-staphylococcal activity by determining minimum inhibitory and bactericidal concentrations against pathogenic Staphylococcus spp. and by imaging using atomic force microscopy. Moreover, the mammalian cell biocompatibility were also assessed through hemolytic and cell toxicity assays. QCG presented promising antimicrobial activity against methicillin-resistant S. aureus and biocompatibility on tested cells. These results show that QCG could be a promising tool in the development of biomaterials with an anti-septic action.info:eu-repo/semantics/publishedVersio

    Epiisopilosine alkaloid has activity against Schistosoma mansoni in mice without acute toxicity

    Get PDF
    Schistosomiasis is a disease caused by parasites of the genus Schistosoma, currently affecting more than 200 million people. Among the various species of this parasite that infect humans, S. mansoni is the most common. Pharmacological treatment is limited to the use of a single drug, praziquantel (PZQ), despite reports of parasite resistance and low efficacy. It is therefore necessary to investigate new potential schistosomicidal compounds. In this study, we tested the efficacy of epiisopilosine (EPIIS) in a murine model of schistosomiasis. A single dose of EPIIS (100 or 400 mg/kg) administered orally to mice infected with adult S. mansoni resulted in reduced worm burden and egg production. The treatment with the lower dose of EPIIS (100 mg/kg) significantly reduced total worm burden by 60.61% (P < 0.001), as well as decreasing hepatosplenomegaly and egg excretion. Scanning electron microscopy revealed morphological changes in the worm tegument after treatment. Despite good activity of EPIIS in adult S. mansoni, oral treatment with single dose of EPIIS 100 mg/kg had only moderate effects in mice infected with juvenile S. mansoni. In addition, we performed cytotoxicity and toxicological studies with EPIIS and found no in vitro cytotoxicity (in HaCaT, and NIH-3T3 cells) at a concentration of 512 μg/mL. We also performed in silico analysis of toxicological properties and showed that EPIIS had low predicted toxicity. To confirm this, we investigated systemic acute toxicity in vivo by orally administering a 2000 mg/kg dose to Swiss mice. Treated mice showed no significant changes in hematological, biochemical, or histological parameters compared to non-treated animals. Epiisopilosine showed potential as a schistosomicidal drug: it did not cause acute toxicity and it displayed an acceptable safety profile in the animal model

    Cellulose Nanocrystals Obtained from Rice By-Products and Their Binding Potential to Metallic Ions

    No full text
    The present study aimed to develop and optimize a method to obtain cellulose nanocrystals from the agricultural by-products rice husk and straw and to evaluate their electrostructural modifications in the presence of metallic ions. First, different particle formation conditions and routes were tested and analyzed by spectrophotometry, dynamic light scattering (DLS), and Zeta potential measurements. Then, electrostructural effects of ions Na(I), Cd(II), and Al(III) on the optimized nanoparticles were analyzed by atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrical conductivity (EC) assessments. The produced cellulose nanocrystals adopted a rod-like shape. AFM height distribution and EC data indicated that the nanocrystals have more affinity in binding with Na(I) > Al(III) > Cd(II). These data suggest that the use of these cellulose nanocrystals in the bioremediation field is promising, both in metal sorption from wastewater and as an alternative for water desalination

    Acute and subchronic toxicity of the antitumor agent rhodium (II) citrate in Balb/c mice after intraperitoneal administration

    Get PDF
    This study aimed to investigate potential acute and subchronic toxicity of rhodium (II) citrate in female Balb/c mice after intraperitoneal injections. In the acute test, independent groups received five doses; the highest dose (107.5 mg/kg) was equivalent to 33 times that used in our previous reports. The other doses were chosen as proportions of the highest, being 80.7 (75%), 53.8 (50%), 26.9 (25%) or 13.8 mg/kg (12.5%). Animals were monitored over 38 days and no severe signs of toxicity were observed, according to mortality, monitoring of adverse symptoms, hematological, biochemical and genotoxic parameters. We conclude that the median lethal dose (LD50) could be greater than 107.5 mg/kg. In the subchronic test, five doses of Rh2Cit (80, 60, 40, 20 or 10 mg/kg) were evaluated and injections were conducted on alternate days, totaling five applications per animal. Paclitaxel (57.5 mg/kg) and saline solution were controls. Clinical observations, histopathology of liver, lung and kidneys and effects on hematological, biochemistry and genotoxic records indicated that Rh2Cit induced no severe toxic effects, even at an accumulated dose up to 400 mg/kg.We suggest Rh2Cit has great potential as an antitumor drug without presenting acute and subchronic toxicity

    Quaternized cashew gum: An anti-staphylococcal and biocompatible cationic polymer for biotechnological applications

    No full text
    Chemical modifications to cashew gum (CG) structure have been previously reported to obtain new physicochemical characteristics, however until now there were no reports of modifications by intro-duction of new functional groups to add cationic character. This study presents a quaternization route for CG using a quaternary ammonium reagent. The chemical features of the quaternized cashew gum derivatives (QCG) were analyzed by: FTIR, elemental analysis, degree of substitution, Zeta potential, 1H NMR and 1H-13C correlation (HSQC). QCG were evaluated for their anti-staphylococcal activity by deter-mining minimum inhibitory and bactericidal concentrations against pathogenic Staphylococcus spp. and by imaging using atomic force microscopy. Moreover, the mammalian cell biocompatibility were also assessed through hemolytic and cell toxicity assays. QCG presented promising antimicrobial activity against methicillin-resistant S. aureus and biocompatibility on tested cells. These results show that QCG could be a promising tool in the development of biomaterials with an anti-septic action.info:eu-repo/semantics/publishedVersio

    Structure and function of a novel antioxidant peptide from the skin of tropical frogs

    Get PDF
    The amphibian skin plays an important role protecting the organism from external harmful factors such as microorganisms or UV radiation. Based on biorational strategies, many studies have investigated the cutaneous secretion of anurans as a source of bioactive molecules. By a peptidomic approach, a novel antioxidant peptide (AOP) with in vitro free radical scavenging ability was isolated from Physalaemus nattereri. The AOP, named antioxidin-I, has a molecular weight [M+H]+ = 1543.69Da and a TWYFITPYIPDK primary amino acid sequence. The gene encoding the antioxidin-I precursor was expressed in the skin tissue of three other Tropical frog species: Phyllomedusa tarsius, P. distincta and Pithecopus rohdei. cDNA sequencing revealed highly homologous regions (signal peptide and acidic region). Mature antioxidin-I has a novel primary sequence with low similarity compared with previously described amphibian's AOPs. Antioxidin-I adopts a random structure even at high concentrations of hydrophobic solvent, it has poor antimicrobial activity and poor performance in free radical scavenging assays in vitro, with the exception of the ORAC assay. However, antioxidin-I presented a low cytotoxicity and suppressed menadione-induced redox imbalance when tested with fibroblast in culture. In addition, it had the capacity to substantially attenuate the hypoxia-induced production of reactive oxygen species when tested in hypoxia exposed living microglial cells, suggesting a potential neuroprotective role for this peptide

    Antischistosomal effect of a single 100 mg/kg oral dose of EPIIS administered to mice harboring juvenile <i>S</i>. <i>mansoni</i> infection.

    No full text
    <p><b>(A)</b> EPIIS effect on worm burden. <b>(B)</b> EPIIS effect on egg development stages (oogram) <b>(C)</b> Effect on Stoll egg count. Points represent data from individual mice that were infected and treated with EPIIS, or infected and untreated (control). The horizontal bars represent median values. **<i>P</i> < 0.01 and ***<i>P</i> < 0.001 compared with untreated groups.</p
    corecore