8 research outputs found

    Magnetically Multilayer Polysaccharide Membranes for Biomedical Applications

    No full text
    Self-standing nanocomposite films based on biopolymers and functional nanostructures have been widely used due to their potential applications as active elements in biomedical devices. The coupling between chitosan (CHI) and alginate (ALG) multilayered films and magnetic nanoparticles (MNPs) allowed to fabricate magnetic responsive freestanding membranes with a high structural control along the thickness, using the layer-by-layer (LbL) methodology. The mechanical characterization evidenced a trend for an increase of both Young modulus, and ultimate tensile strength with the inclusion of MNPs, or by cross-linking with genipin. Additionally, the multilayered membranes exhibited shape memory properties triggered by hydration. The in vitro biological performance studies showed that cells were more viable and adherent with higher proliferation rates when MNPs were included in the membranes. Our results suggested the potential of the developed magneto-active freestanding membranes for biomedical applications, such as in tissue engineering and biomedical applications

    Magnetically Multilayer Polysaccharide Membranes for Biomedical Applications

    No full text
    Self-standing nanocomposite films based on biopolymers and functional nanostructures have been widely used due to their potential applications as active elements in biomedical devices. The coupling between chitosan (CHI) and alginate (ALG) multilayered films and magnetic nanoparticles (MNPs) allowed to fabricate magnetic responsive freestanding membranes with a high structural control along the thickness, using the layer-by-layer (LbL) methodology. The mechanical characterization evidenced a trend for an increase of both Young modulus, and ultimate tensile strength with the inclusion of MNPs, or by cross-linking with genipin. Additionally, the multilayered membranes exhibited shape memory properties triggered by hydration. The in vitro biological performance studies showed that cells were more viable and adherent with higher proliferation rates when MNPs were included in the membranes. Our results suggested the potential of the developed magneto-active freestanding membranes for biomedical applications, such as in tissue engineering and biomedical applications

    Physicochemical characterization of scaffolds.

    No full text
    <p>A) FTIR measurements of CHT/CS scaffolds and pure polysaccharides (CHT and CS), B) Swelling test up to 3 days (The inset graphic expands the water uptake for the first 5 hours), C) Weight loss of the scaffolds in PBS (▴) and in an enzymatic solution at 37°C (▪).</p

    Scaffold characterization.

    No full text
    <p>A) Production steps of scaffolds: LbL and leaching of free-packet paraffin spheres, B)Digital photograph of the scaffold after all the steps C) Optical Microscopy image of the scaffolds after the leaching of the core material, D, E) SEM micrographs of cross-sections (two different magnifications) and Histological cross-sections of the scaffolds after staining with alcian blue (F) and eosin (G).</p
    corecore