1,022 research outputs found

    FISH-aimed karyotype analysis in Aconitum subgen : aconitum reveals excessive rDNA sites in tetraploid taxa

    Get PDF
    The location of 5S and 35S rDNA sequences in chromosomes of four Aconitum subsp. Aconitum species was analyzed after fluorescence in situ hybridization (FISH). Both in diploids (2n = 2x = 16; Aconitum variegatum, A. degenii) and tetraploids (2n = 4× = 32; A. firmum, A. plicatum), rDNA repeats were localized exclusively on the shorter arms of chromosomes, in subterminal or pericentromeric sites. All analyzed species showed similar basal genome size (Cx = 5.31-5.71 pg). The most striking features of tetraploid karyotypes were the conservation of diploid rDNA loci and emergence of many additional 5S rDNA clusters. Chromosomal distribution of excessive ribosomal sites suggests their role in the secondary diploidization of tetraploid karyotypes

    Structures of Sortase B from Staphylococcus aureus and Bacillus anthracis Reveal Catalytic Amino Acid Triad in the Active Site

    Get PDF
    Surface proteins attached by sortases to the cell wall envelope of bacterial pathogens play important roles during infection. Sorting and attachment of these proteins is directed by C-terminal signals. Sortase B of S. aureus recognizes a motif NPQTN, cleaves the polypeptide after the Thr residue, and attaches the protein to pentaglycine cross-bridges. Sortase B of B. anthracis is thought to recognize the NPKTG motif, and attaches surface proteins to m-diaminopimelic acid cross-bridges. We have determined crystal structure of sortase B from B. anthracis and S. aureus at 1.6 and 2.0 Å resolutions, respectively. These structures show a β-barrel fold with α-helical elements on its outside, a structure thus far exclusive to the sortase family. A putative active site located on the edge of the β-barrel is comprised of a Cys-His-Asp catalytic triad and presumably faces the bacterial cell surface. A putative binding site for the sorting signal is located nearby

    Karyotype structure and chromosome fragility in the grass Phleum echinatum Host

    Get PDF
    Phleum echinatum Host (2n = 2x = 10) is an annual Mediterranean species which differs from other representatives of the genus Phleum by reduced chromosome number, asymmetric karyotype and unusually high amount of DNA in the genome. Chromosomes of this plant were studied using conventional acetic-orcein staining and fluorescence in situ hybridization (FISH). FISH showed the major 35S ribosomal DNA (rDNA) site at the secondary constriction of satellite chromosome (3) and the minor 35S rDNA site near 5S rDNA cluster in the monobrachial chromosome 5. Telomeric repeats were detected at all chromosome ends within secondary constriction in satellited chromosome 3 and at the centromeric regions of chromosomes 1 and 2. Intrachromosomally located telomeric repeats are probably traces of chromosomal rearrangements that have shaped P.echinatum genome; they were prone to breakage which was manifested in chromosome fragmentation. The most distinct telomeric signals, suggesting massive amplification of interstitial telomeric sequences (ITRs), were observed at the nucleolar organizer region (NOR) of the third chromosome pair. Double FISH confirmed co-localization of telomeric and 35S rDNA repeats in this locus characterized by the biggest fragility in the karyotype. Fragile sites of P.echinatum, composed of amplified telomeric repeats, may bear a resemblance to metazoan rare fragile sites enriched in microsatellite repeats

    Polyploidy, alien species and invasiveness in Polish angiosperms

    Get PDF
    Chromosome numbers, mainly for Polish flora, were examined in order to investigate whether such features as chromosome numbers and polyploid frequencies are correlated with a plant’s origin (native vs. alien) and invasiveness. Polyploid frequencies were estimated using three methods: the 11 and 14 thresholds and the 3.5 x value. Comparisons of the 2n values were done on different levels: in all angiosperms and in dicots and monocots separately. Invasive and non-invasive plants were compared in the entire dataset and in alien species only. Significant differences in both chromosome numbers and polyploid frequencies between alien and native species were observed. In most cases, native plants had more chromosomes and were more abundant in polyploids than in alien species. Also, monocots had higher polyploid frequencies than dicots. Comparisons of invasive and non-invasive plants done for all of the data and only for alien species showed that invasive species generally had more chromosomes and polyploids were more frequent in them than in the latter group; however, these differences were not always statistically significant. Possible explanations for these observations are discussed

    Structural Basis for Catalysis by the Mono- and Dimetalated Forms of the \u3cem\u3edapE\u3c/em\u3e-Encoded \u3cem\u3eN\u3c/em\u3e-succinyl-L,L-Diaminopimelic Acid Desuccinylase

    Get PDF
    Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both meso-diaminopimelic acid and lysine and, therefore, represent potential targets for novel antibacterials. The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-l,l-diaminopimelic acid to l,l-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis, indicating that DapE\u27s are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein, we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures, we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors

    Physiological aspects of sex differences and Haldane’s rule in Rumex hastatulus

    Get PDF
    Haldane’s rule (HR, impairment of fertility and/or viability of interracial hybrids) seems to be one of few generalizations in evolutionary biology. The validity of HR has been confirmed in animals, and more recently in some dioecious plants (Silene and Rumex). Dioecious Rumex hastatulus has two races differing in the sex chromosome system: Texas (T) and North Carolina (NC), and T × NC males showed both reduced pollen fertility and rarity—two classical symptoms of Haldane’s rule (HR). The reduced fertility of these plants has a simple mechanistic explanation, but the reason for their rarity was not elucidated. Here, we measured selected physiological parameters related to the antioxidant defense system in parental races and reciprocal hybrids of R. hastatulus. We showed that the X-autosome configurations, as well as asymmetries associated with Y chromosomes and cytoplasm, could modulate this system in hybrids. The levels and quantitative patterns of the measured parameters distinguish the T × NC hybrid from the other analyzed forms. Our observations suggest that the rarity of T × NC males is caused postzygotically and most likely related to the higher level of oxidative stress induced by the chromosomal incompatibilities. It is the first report on the physiological aspects of HR in plants

    Amino acid:tRNA ligases (EC 6.1.1.-)

    Get PDF
    • …
    corecore