38 research outputs found
Hypervolume-based Multi-objective Bayesian Optimization with Student-t Processes
Student- processes have recently been proposed as an appealing alternative
non-parameteric function prior. They feature enhanced flexibility and
predictive variance. In this work the use of Student- processes are explored
for multi-objective Bayesian optimization. In particular, an analytical
expression for the hypervolume-based probability of improvement is developed
for independent Student- process priors of the objectives. Its effectiveness
is shown on a multi-objective optimization problem which is known to be
difficult with traditional Gaussian processes.Comment: 5 pages, 3 figure
Fuzzy local linear approximation-based sequential design
When approximating complex high-fidelity black box simulators with surrogate models, the experimental design is often created sequentially. LOLA-Voronoi, a powerful state of the art method for sequential design combines an Exploitation and Exploration algorithm and adapts the sampling distribution to provide extra samples in non-linear regions. The LOLA algorithm estimates gradients to identify interesting regions, but has a bad complexity which results in long computation time when simulators are high-dimensional. In this paper, a new gradient estimation approach for the LOLA algorithm is proposed based on Fuzzy Logic. Experiments show the new method is a lot faster and results in experimental designs of comparable quality
Sensitivity analysis of expensive black-box systems using metamodeling
Simulations are becoming ever more common as a tool for designing complex
products. Sensitivity analysis techniques can be applied to these simulations
to gain insight, or to reduce the complexity of the problem at hand. However,
these simulators are often expensive to evaluate and sensitivity analysis
typically requires a large amount of evaluations. Metamodeling has been
successfully applied in the past to reduce the amount of required evaluations
for design tasks such as optimization and design space exploration. In this
paper, we propose a novel sensitivity analysis algorithm for variance and
derivative based indices using sequential sampling and metamodeling. Several
stopping criteria are proposed and investigated to keep the total number of
evaluations minimal. The results show that both variance and derivative based
techniques can be accurately computed with a minimal amount of evaluations
using fast metamodels and FLOLA-Voronoi or density sequential sampling
algorithms.Comment: proceedings of winter simulation conference 201
Active learning for approximation of expensive functions with normal distributed output uncertainty
When approximating a black-box function, sampling with active learning
focussing on regions with non-linear responses tends to improve accuracy. We
present the FLOLA-Voronoi method introduced previously for deterministic
responses, and theoretically derive the impact of output uncertainty. The
algorithm automatically puts more emphasis on exploration to provide more
information to the models
GPflowOpt: A Bayesian Optimization Library using TensorFlow
A novel Python framework for Bayesian optimization known as GPflowOpt is
introduced. The package is based on the popular GPflow library for Gaussian
processes, leveraging the benefits of TensorFlow including automatic
differentiation, parallelization and GPU computations for Bayesian
optimization. Design goals focus on a framework that is easy to extend with
custom acquisition functions and models. The framework is thoroughly tested and
well documented, and provides scalability. The current released version of
GPflowOpt includes some standard single-objective acquisition functions, the
state-of-the-art max-value entropy search, as well as a Bayesian
multi-objective approach. Finally, it permits easy use of custom modeling
strategies implemented in GPflow