1,489 research outputs found

    Kinetic Monte Carlo simulations of oscillatory shape evolution for electromigration-driven islands

    Full text link
    The shape evolution of two-dimensional islands under electromigration-driven periphery diffusion is studied by kinetic Monte Carlo (KMC) simulations and continuum theory. The energetics of the KMC model is adapted to the Cu(100) surface, and the continuum model is matched to the KMC model by a suitably parametrized choice of the orientation-dependent step stiffness and step atom mobility. At 700 K shape oscillations predicted by continuum theory are quantitatively verified by the KMC simulations, while at 500 K qualitative differences between the two modeling approaches are found.Comment: 7 pages, 6 figure

    Wissenschaftliches Arbeiten und Schreiben fĂĽr Maschinenbau-Studierende : Skript zur Vorlesung

    Get PDF
    Dieses Skript wurde für die Lehrveranstaltung „Einführung in wissenschaftliches Arbeiten und Schreiben" für Maschinenbau-Studierende erstellt und ist zur Verwendung für die Teilnehmer/Teilnehmerinnen der Veranstaltung und Interessierte vorgesehen

    Morphological stability of electromigration-driven vacancy islands

    Full text link
    The electromigration-induced shape evolution of two-dimensional vacancy islands on a crystal surface is studied using a continuum approach. We consider the regime where mass transport is restricted to terrace diffusion in the interior of the island. In the limit of fast attachment/detachment kinetics a circle translating at constant velocity is a stationary solution of the problem. In contrast to earlier work [O. Pierre-Louis and T.L. Einstein, Phys. Rev. B 62, 13697 (2000)] we show that the circular solution remains linearly stable for arbitrarily large driving forces. The numerical solution of the full nonlinear problem nevertheless reveals a fingering instability at the trailing end of the island, which develops from finite amplitude perturbations and eventually leads to pinch-off. Relaxing the condition of instantaneous attachment/detachment kinetics, we obtain non-circular elongated stationary shapes in an analytic approximation which compares favorably to the full numerical solution.Comment: 12 page

    Spiral Growth and Step Edge Barriers

    Get PDF
    The growth of spiral mounds containing a screw dislocation is compared to the growth of wedding cakes by two-dimensional nucleation. Using phase field simulations and homoepitaxial growth experiments on the Pt(111) surface we show that both structures attain the same characteristic large scale shape when a significant step edge barrier suppresses interlayer transport. The higher vertical growth rate observed for the spiral mounds on Pt(111) reflects the different incorporation mechanisms for atoms in the top region and can be formally represented by an enhanced apparent step edge barrier.Comment: 11 pages, 4 figures, partly in colo

    Hyperpolarization-Enhanced NMR Spectroscopy of Unaltered Biofluids Using Photo-CIDNP

    Get PDF
    Altres ajuts: acords transformatius de la UABThe direct and unambiguous detection and identification of individual metabolite molecules present in complex biological mixtures constitute a major challenge in (bio)analytical research. In this context, nuclear magnetic resonance (NMR) spectroscopy has proven to be particularly powerful owing to its ability to provide both qualitative and quantitative atomic-level information on multiple analytes simultaneously in a noninvasive manner. Nevertheless, NMR suffers from a low inherent sensitivity and, moreover, lacks selectivity regarding the number of individual analytes to be studied in a mixture of a myriad of structurally and chemically very different molecules, e.g., metabolites in a biofluid. Here, we describe a method that circumvents these shortcomings via performing selective, photochemically induced dynamic nuclear polarization (photo-CIDNP) enhanced NMR spectroscopy on unmodified complex biological mixtures, i.e., human urine and serum, which yields a single, background-free one-dimensional NMR spectrum. In doing this, we demonstrate that photo-CIDNP experiments on unmodified complex mixtures of biological origin are feasible, can be performed straightforwardly in the native aqueous medium at physiological metabolite concentrations, and act as a spectral filter, facilitating the analysis of NMR spectra of complex biofluids. Due to its noninvasive nature, the method is fully compatible with state-of-the-art metabolomic protocols providing direct spectroscopic information on a small, carefully selected subset of clinically relevant metabolites. We anticipate that this approach, which, in addition, can be combined with existing high-throughput/high-sensitivity NMR methodology, holds great promise for further in-depth studies and development for use in metabolomics and many other areas of analytical research
    • …
    corecore