184 research outputs found

    Aerosol-Schwefelsäure in der Atmosphäre und im Nachlauf von Düsenflugzeugen: Entwicklung und Einsatz einer neuartigen, flugzeuggetragenen Massenspektrometersonde

    Get PDF
    Ein neuartiges, flugzeuggetragenes Instrument, genannt 'VACA' (Volatile Aerosol Component Analyzer), zur quantitativen Bestimmung von Aerosol-Schwefelsäure (H2SO4(ae)) wurde entwickelt. Die VACA-Methode basiert auf dem Verdampfen von Aerosolteilchen mit anschließendem Nachweis der gasförmigen H2SO4 durch Ionen-Molekül-Reaktions-Massenspektrometrie. Die Methode ist schnell und sehr empfindlich (Zeitauflösung 3 s, Nachweisgrenze 10 pptv) und bietet erstmalig die Möglichkeit zur on-line Messung von Aerosol-Schwefelsäure. Das VACA-System wurde in Laboruntersuchungen charakterisiert und kalibriert. Es wurde für flugzeuggetragene Messungen vorbereitet und bei der internationalen Meßkampagne ACE 2 für Messungen in der Freien Troposphäre eingesetzt. Vertikalprofile der Konzentration der Aerosol-Schwefelsäure zwischen 2 und 13 km Höhe zeigen wiederholt eine ausgeprägte H2SO4-Aerosolschicht in 5 km Höhe. Während der Meßkampagnen SULFUR 5 und SULFUR 6 wurde das VACA-System zur Messung von H2SO4 im Abgas von Düsenflugzeugen im Flug eingesetzt. Es konnte erstmalig direkt Schwefelsäure im Flugzeugabgas nachgewiesen werden. Mischungsverhältnisse bis zu 1.5 ppbv bei einem Abgasalter von 1.1 s wurden beobachtet. Die Bestimmung des Konversionsfaktors e für die Umwandlung von Treibstoffschwefel in Schwefelsäure ergab Werte von e>0.4 (ATTAS, Treibstoffschwefelgehalt=FSC =2700 ppmm) bzw. e=3.3±1.8 (B-737, FSC=56ppmm). Weiterhin zeigten Messungen von Chemi-Ionen, die von Flugzeugtriebwerken emittiert werden, daß zahlreiche Ionen großer Masse (>450 amu) entstehen. Dies bestätigt die Existenz einer ionen-induzierten Aerosol-Mode

    Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry

    Get PDF
    The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS) through the reaction of NO−3 ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (americium-241) ion source which has been used previously. The results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of 1 min it is ~6×104 molecule cm−3 of H2SO4. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS

    Wie in Wolken der Regen entsteht : Kristallisationskeime als Schlüssel

    Get PDF
    Wolken haben einen maßgeblichen Einfluss auf den Wasserhaushalt der Erde, das Wettergeschehen und das Klima. Sie wissenschaftlich zu beschreiben, ist schwierig – und das erschwert die Niederschlagsvorhersage ebenso wie die Klimamodellierung. Wichtig für die Entstehung von Regen in unseren Breiten sind Eispartikel. Sie machen einen großen Teil der Wolken aus. Doch wie bilden sie sich, und warum sind sie für viele physikalische Prozesse in den Wolken unentbehrlich? Und schließlich: Wirkt sich menschliches Handeln auf die Wolken aus

    Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF6 and CO2

    Get PDF
    The seasonality of transport and mixing of air into the lowermost stratosphere (LMS) is studied using distributions of mean age of air and a~mass balance approach, based on in-situ observations of SF6 and CO2 during the SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) aircraft campaigns. Combining the information of the mean age of air and the water vapour distributions we demonstrate that the tropospheric air transported into the LMS above the extratropical tropopause layer (ExTL) originates predominantly from the tropical tropopause layer (TTL). The concept of our mass balance is based on simultaneous measurements of the two passive tracers and the assumption that transport into the LMS can be described by age spectra which are superposition of two different modes. Based on this concept we conclude that the stratospheric influence on LMS composition is strongest in April with tropospheric fractions (α1) below 20% and that the strongest tropospheric signatures are found in October with (α1 greater than 80%. Beyond the fractions, our mass balance concept allows to calculate the associated transit times for transport of tropospheric air from the tropics into the LMS. The shortest transit times (<0.3 years) are derived for the summer, continuously increasing up to 0.8 years by the end of spring. These findings suggest that strong quasi-horizontal mixing across the weak subtropical jet from summer to mid of autumn and the considerably shorter residual transport time-scales within the lower branch of the Brewer-Dobson circulation in summer than in winter dominates the tropospheric influence in the LMS until the beginning of next year's summer

    Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF6 and CO2

    Get PDF
    The seasonality of transport and mixing of air into the lowermost stratosphere (LMS) is studied using distributions of mean age of air and a mass balance approach, based on in-situ observations of SF6 and CO2 during the SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) aircraft campaigns. Combining the information of the mean age of air and the water vapour distributions we demonstrate that the tropospheric air transported into the LMS above the extratropical tropopause layer (ExTL) originates predominantly from the tropical tropopause layer (TTL). The concept of our mass balance is based on simultaneous measurements of the two passive tracers and the assumption that transport into the LMS can be described by age spectra which are superposition of two different modes. Based on this concept we conclude that the stratospheric influence on LMS composition is strongest in April with extreme values of the tropospheric fractions (alpha1) below 20% and that the strongest tropospheric signatures are found in October with alpha1 greater than 80%. Beyond the fractions, our mass balance concept allows us to calculate the associated transit times for transport of tropospheric air from the tropics into the LMS. The shortest transit times (<0.3 years) are derived for the summer, continuously increasing up to 0.8 years by the end of spring. These findings suggest that strong quasi-horizontal mixing across the weak subtropical jet from summer to mid of autumn and the considerably shorter residual transport time-scales within the lower branch of the Brewer-Dobson circulation in summer than in winter dominates the tropospheric influence in the LMS until the beginning of next year's summer

    Simulation of ion-induced nucleation in the CLOUD chamber

    Get PDF
    A comparison between the binary Sulphuric Acid Water NUCleation model SAWNUC and CLOUD results is presented. Comparison includes direct comparison with a battery of particle counters of various counting efficiencies and APi-TOF charged cluster distribution. A good agreement is found for nucleation rates at various temperatures

    Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application

    Get PDF
    A characterization of the ultra-fine aerosol particle counter COPAS (COndensation PArticle counting System) for operation on board the Russian high altitude research aircraft M-55 Geophysika is presented. The COPAS instrument consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs) operated with the chlorofluorocarbon FC-43. It operates at pressures between 400 and 50 hPa for aerosol detection in the particle diameter (dp) range from 6 nm up to 1 micro m. The aerosol inlet, designed for the M-55, is characterized with respect to aspiration, transmission, and transport losses. The experimental characterization of counting efficiencies of three CPCs yields dp50 (50% detection particle diameter) of 6 nm, 11 nm, and 15 nm at temperature differences (DeltaT) between saturator and condenser of 17°C, 30°C, and 33°C, respectively. Non-volatile particles are quantified with a fourth CPC, with dp50=11 nm. It includes an aerosol heating line (250°C) to evaporate H2SO4-H2O particles of 11 nm<dp<200 nm at pressures between 70 and 300 hPa. An instrumental in-flight inter-comparison of the different COPAS CPCs yields correlation coefficients of 0.996 and 0.985. The particle emission index for the M-55 in the range of 1.4–8.4×10 16 kg -1 fuel burned has been estimated based on measurements of the Geophysika's own exhaust

    Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6)

    Get PDF
    Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l.) during the Cloud and Aerosol Characterization Experiment (CLACE 6) in February and March 2007. During mixed phase cloud events ice crystals from 5–20 micro m were separated from larger ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI). During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR) were analyzed for size and composition by the two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT) and a commercial Aerosol Time-of-Flight Mass Spectrometer (ATOFMS, TSI Model 3800). During CLACE 6 the SPLAT instrument characterized 355 individual IR that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 IR. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS) and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094). The measurements showed that mineral dust was strongly enhanced in the ice particle residues. Close to all of the SPLAT spectra from ice residues did contain signatures from mineral compounds, albeit connected with varying amounts of soluble compounds. Similarly, close to all of the ATOFMS IR spectra show a mineral or metallic component. Pure sulfate and nitrate containing particles were depleted in the ice residues. Sulfate and nitrate was found to dominate the droplet residues (~90% of the particles). The results from the two different single particle mass spectrometers were generally in agreement. Differences in the results originate from several causes, such as the different wavelength of the desorption and ionisation lasers and different size-dependent particle detection efficiencies

    Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility

    Get PDF
    Processes occurring in the tropical upper troposphere and lower stratosphere (UT/LS) are of importance for the global climate, for the stratospheric dynamics and air chemistry, and they influence the global distribution of water vapour, trace gases and aerosols. The mechanisms underlying cloud formation and variability in the UT/LS are of scientific concern as these still are not adequately described and quantified by numerical models. Part of the reasons for this is the scarcity of detailed in-situ measurements in particular from the Tropical Transition Layer (TTL) within the UT/LS. In this contribution we provide measurements of particle number densities and the amounts of non-volatile particles in the submicron size range present in the UT/LS over Southern Brazil, West Africa, and Northern Australia. The data were collected in-situ on board of the Russian high altitude research aircraft M-55 "Geophysica" using the specialised COPAS (COndensation PArticle counting System) instrument during the TROCCINOX (Araçatuba, Brazil, February 2005), the SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006) campaigns. The vertical profiles obtained are compared to those from previous measurements from the NASA DC-8 and NASA WB-57F over Costa Rica and other tropical locations between 1999 and 2007. The number density of the submicron particles as function of altitude was found to be remarkably constant (even back to 1987) over the tropical UT/LS altitude band such that a parameterisation suitable for models can be extracted from the measurements. At altitudes corresponding to potential temperatures above 430 K a slight increase of the number densities from 2005/2006 results from the data in comparison to the 1987 to 2007 measurements. The origins of this increase are unknown. By contrast the data from Northern hemispheric mid latitudes do not exhibit such an increase between 1999 and 2006. Vertical profiles of the non-volatile fraction of the submicron particles were also measured by a COPAS channel and are presented here. The resulting profiles of the non-volatile number density fraction show a pronounced maximum of 50% in the tropical TTL over Australia and West Africa. Below and above this fraction is much lower attaining values of 10% and smaller. In the lower stratosphere the fine particles mostly consist of sulphuric acid which is reflected in the low numbers of non-volatile residues measured by COPAS. Without detailed chemical composition measurements the reason for the increase of non-volatile particle fractions cannot yet be given. The long distance transfer flights to Brazil, Australia and West-Africa were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data measured during these transfers represent a "snapshot picture" documenting the status of a significant part of the global UT/LS aerosol (with sizes below 1 μm) at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are also presented in this paper in order to provide input on the UT/LS background aerosol for modelling purposes

    Performance of diethylene glycol based particle counters in the sub 3 nm size range [Discussion paper]

    Get PDF
    When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using Condensation Particle Counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently CPCs, able to reliably detect particles below 2 nm in size and even close to 1 nm became available. The corrections needed to calculate nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous flow CPCs using diethylene glycol (DEG) as the working fluid. The design is based on two TSI 3776 counters. Several sets of measurements to characterize their performance at different temperature settings were carried out. Furthermore two mixing-type Particle Size Magnifiers (PSM) A09 from Airmodus were characterized in parallel. One PSM was operated at the highest mixing ratio (1 L min−1 saturator flow), and the other was operated in a scanning mode, where the mixing ratios are changed periodically, resulting in a range of cut-off sizes. Different test aerosols were generated using a nano-Differential Mobility Analyzer (nano-DMA) or a high resolution DMA, to obtain detection efficiency curves for all four CPCs. One calibration setup included a high resolution mass spectrometer (APi-TOF) for the determination of the chemical composition of the generated clusters. The lowest cut-off sizes were achieved with negatively charged ammonium sulphate clusters, resulting in cut-offs of 1.4 nm for the laminar flow CPCs and 1.2 and 1.1 nm for the PSMs. A comparison of one of the laminar-flow CPCs and one of the PSMs measuring ambient and laboratory air showed good agreement between the instruments
    corecore