36 research outputs found

    Infrared spectra of hydrogen bond network in lamellar perfluorocarboxylic acid monohydrates.

    Get PDF
    The infrared spectra of the long-chain perfluorocarboxylic acid monohydrates differ markedly from those of the anhydrous dimers. Consequently, the structure of the solid perfluorocarboxylic acid monohydrates must differ from any known dimer-containing carboxylic acid crystals. Consideration of the significant features of the infrared spectra of the long-chain perfluorocarboxylic acid monohydrates, supplemented by their Raman spectra, and comparison with the spectra of auxiliary substances have led us to conclude that the rather strong neutral carboxyl-hydroxyl to water bonding can best explain the observations. The infrared spectra indicate the presence of fairly short hydrogen bonds connecting the water molecules to the carbonyl groups. In the construction of the hydrogen bonding pattern of the perfluorocarboxylic acid monohydrates, the oxalic acid dihydrate plays the key role. The striking similarity between the infrared spectra of the oxalic acid dihydrates and the perfluorocarboxylic acid monohydrates in the regions characteristic of water and OH⋯O vibration suggests that the structure of the hydrated carboxyl groups is the same in both crystals. These regions are characterized by the sharp doublet at 3539 cm-1 and 3464 cm-1, which is due to the H2O ν1 and ν3 stretching vibrations, respectively, and the broad absorption between 3000 cm-1 and 1500 cm-1 with the intense band at 1970 cm-1, both associated with the vibration of the OH⋯O group. The later peak consists of two band components at near 1980 cm-1 and 2020 cm-1. These band components show different behaviour when the temperature, polarization or deuteration is changed. In general, the infrared spectra of long-chain perfluorocarboxylic acids represent the system with very short hydrogen bonds connecting the water molecules to the carboxylates. This hydrogen bond pattern should be very similar to that found in the crystals of α-oxalic acid dihydrate

    Iodide∙∙∙π interactions of perhalogenated quinoid rings in co-crystals with organic bases

    Get PDF
    First anion∙∙∙π contacts with quinoid rings have been described in novel co-crystals of tetrabromo- and tetrachloroquinone with iodide salts of substituted N-methylpyridinium cations. In seven crystal structures of these co-crystals a centrosymmetric unit I-∙∙∙quinone∙∙∙I- is observed involving close contacts between iodide anions and electron-depleted carbon skeletons of the quinoid rings. However, the salt with N-methyl-4-methylcarboxypyridinium base crystallizes in two polymorphs characterized by O=C∙∙∙quinone∙∙∙C=O interaction instead of I-∙∙∙quinone∙∙∙I- one. A possible charge transfer, suggested by black color of the crystals, is probed by solid-state NMR and IR spectroscopies and analyzed by DFT calculations

    Strong Hydrogen Bonds in Acetylenedicarboxylic Acid Dihydrate

    Get PDF
    Acetylenedicarboxylic acid dihydrate (ADAD) represents a complex with strong hydrogen bonding between the carboxylic OH and the water molecule. An X-ray re-examination of the ADAD crystal structure confirms the O...O distance of the short hydrogen bonds, and clearly shows different bond lengths between the two oxygen atoms with respect to the carbon atom in the carboxyl group, indicating a neutral structure for the complex. The neutral structure was also confirmed by vibrational spectroscopy, as no proton transfer was observed. The diffraction studies also revealed two polymorph modifications: room temperature (α) and low temperature (β), with a phase transition at approximately 4.9 °C. The calculated vibrational spectra are in satisfactory agreement with the experimental spectra. A comparison of the structure and the vibrational spectra between the ADAD and the oxalic acid dihydrate reveals some interesting details. The crystal structures of both crystal hydrates are almost identical ; only the O...O distances of the strongest hydrogen bonds differ by 0.08 Å. Although it was expected that a larger O...O spacing in the ADAD crystal may significantly change the infrared and Raman spectra, especially for the frequency and the shape of the acidic OH stretching vibration, both the shape and frequency are almost identical, with all subpeaks topped on the broad OH stretching vibration. The O…O distance dependent are only inand out-of-plane OH deformations modes. The presence of polarons due to the ionized defects was not observed in the vibrational spectra of ADAD. Therefore, the origin of the broad OH band shape was explained in a similar way to the acid dimers. The anharmonicity of a potential enhances the coupling of the OH stretching with the low- frequency hydrogen bond stretching, which, in addition to the Fermi resonance, structures the band shape of the OH stretching. The fine structure found as a superposition of a broad OH stretching is attributed to Davydov coupling

    Evidence of Polaron Excitations in Low Temperature Raman Spectra of Oxalic Acid Dihydrate

    Get PDF
    Low temperature Raman spectra of oxalic acid dihydrate (8K - 300 K) both for polycrystalline and single crystal phase show strong variation with temperature in the interval from 1200 to 2000 cm-1. Previous low temperature diffraction studies all confirmed the stability of the crystal P21/n phase with no indications of any phase transition, reporting the existence of a strong hydrogen bond between the oxalic acid and a water molecule. A new group of Raman bands in the 1200 – 1300 cm-1 interval below 90 K is observed, caused by possible loss of the centre of inversion. This in turn could originate either due to disorder in hydroxyl proton positions, or due to proton transfer from carboxylic group to water molecule. The hypothesis of proton transfer is further supported by the emergence of new bands centered at 1600 cm-1 and 1813 cm-1, which can be explained with vibrations of H3O+ ions. The broad band at 1600 cm-1 looses intensity, while the band at 1813 cm-1 gains intensity on cooling. The agreement between quantum calculations of vibrational spectra and experimentally observed Raman bands of hydronium ions in oxalic acid sesquihydrate crystal corroborate this hypothesis

    Exploration of macromolecular phenotype of human skeletal muscle in diabetes using infrared spectroscopy

    Get PDF
    IntroductionThe global burden of diabetes mellitus is escalating, and more efficient investigative strategies are needed for a deeper understanding of underlying pathophysiological mechanisms. The crucial role of skeletal muscle in carbohydrate and lipid metabolism makes it one of the most susceptible tissues to diabetes-related metabolic disorders. In tissue studies, conventional histochemical methods have several technical limitations and have been shown to inadequately characterise the biomolecular phenotype of skeletal muscle to provide a holistic view of the pathologically altered proportions of macromolecular constituents.Materials and methodsIn this pilot study, we examined the composition of five different human skeletal muscles from male donors diagnosed with type 2 diabetes and non-diabetic controls. We analysed the lipid, glycogen, and collagen content in the muscles in a traditional manner with histochemical assays using different staining techniques. This served as a reference for comparison with the unconventional analysis of tissue composition using Fourier-transform infrared spectroscopy as an alternative methodological approach.ResultsA thorough chemometric post-processing of the infrared spectra using a multi-stage spectral decomposition allowed the simultaneous identification of various compositional details from a vibrational spectrum measured in a single experiment. We obtained multifaceted information about the proportions of the different macromolecular constituents of skeletal muscle, which even allowed us to distinguish protein constituents with different structural properties. The most important methodological steps for a comprehensive insight into muscle composition have thus been set and parameters identified that can be used for the comparison between healthy and diabetic muscles.ConclusionWe have established a methodological framework based on vibrational spectroscopy for the detailed macromolecular analysis of human skeletal muscle that can effectively complement or may even serve as an alternative to histochemical assays. As this is a pilot study with relatively small sample sets, we remain cautious at this stage in drawing definitive conclusions about diabetes-related changes in skeletal muscle composition. However, the main focus and contribution of our work has been to provide an alternative, simple and efficient approach for this purpose. We are confident that we have achieved this goal and have brought our methodology to a level from which it can be successfully transferred to a large-scale study that allows the effects of diabetes on skeletal muscle composition and the interrelationships between the macromolecular tissue alterations due to diabetes to be investigated

    Raman spectroscopic studies of structural changes in polyethylene terephthalate fibres

    Get PDF
    Polietilentereftalatna (PET) vlakna so med procesom njihovega oblikovanja in preoblikovanja, med barvanjem, plemenitenjem in med drugimi procesi izpostavljena visokim temperaturam. Toplotna obdelava pri temperaturah nad temperaturo steklastega prehoda vpliva na kristaliničnost, dimenzije kristalitov, strukturno periodičnost, kristalino in amorfno orientacijo, itd. Strukturne spremembe PET vlaken, ki jih povzroči toplotna obdelava v vodnem mediju ali vročem zraku, smo proučili z ramansko spektroskopijo, ki postaja zelo pomembna tehnika za karakterizacijo kemijskih in fizikalnih lastnosti polimerov v tekstilni kemiji. Osredotočili smo se na določitev strukturnih sprememb, ki izvirajo iz konformacijskih prehodov etilenglikolnega dela PET. Rezultati kažejo, da toplotna obdelava povzroči spremembe v trans/gauche konformacijskem razmerju. Ugotovili smo, da ima temperatura močnejši vpliv kot uporabljeni medij.Poly(ethylenterephthalate) PET fibres are exposed to high temperatures during the fibre formation process, dyeing, finishing and other processes. The thermal treatment of PET fibres above the glass transition temperature changes the crystallinity, crystals\u27 dimensions, structure periodicity, crystal and amorphous orientation, etc. We have studied the structural changes of PET fibres depending on different treatment media (water, air) using Raman spectroscopy. Raman spectroscopy is becoming one of the most significant techniques for characterization of the chemical and physical properties of polymers in textile chemistry. We focused on structural changes due to conformational transitions of ethylene glycol in PET fibres. The results show that thermal treatment causes an increase of trans/gauche conformational ratio with annealing temperature. The presented results show that the annealing temperature has greater influence on structural changes in PET samples than the used treatment medium
    corecore