2,508 research outputs found

    D-ADMM: A Communication-Efficient Distributed Algorithm For Separable Optimization

    Full text link
    We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.Comment: To appear in IEEE Transactions on Signal Processin

    Distributed Optimization With Local Domains: Applications in MPC and Network Flows

    Full text link
    In this paper we consider a network with PP nodes, where each node has exclusive access to a local cost function. Our contribution is a communication-efficient distributed algorithm that finds a vector xā‹†x^\star minimizing the sum of all the functions. We make the additional assumption that the functions have intersecting local domains, i.e., each function depends only on some components of the variable. Consequently, each node is interested in knowing only some components of xā‹†x^\star, not the entire vector. This allows for improvement in communication-efficiency. We apply our algorithm to model predictive control (MPC) and to network flow problems and show, through experiments on large networks, that our proposed algorithm requires less communications to converge than prior algorithms.Comment: Submitted to IEEE Trans. Aut. Contro

    Distributed Basis Pursuit

    Full text link
    We propose a distributed algorithm for solving the optimization problem Basis Pursuit (BP). BP finds the least L1-norm solution of the underdetermined linear system Ax = b and is used, for example, in compressed sensing for reconstruction. Our algorithm solves BP on a distributed platform such as a sensor network, and is designed to minimize the communication between nodes. The algorithm only requires the network to be connected, has no notion of a central processing node, and no node has access to the entire matrix A at any time. We consider two scenarios in which either the columns or the rows of A are distributed among the compute nodes. Our algorithm, named D-ADMM, is a decentralized implementation of the alternating direction method of multipliers. We show through numerical simulation that our algorithm requires considerably less communications between the nodes than the state-of-the-art algorithms.Comment: Preprint of the journal version of the paper; IEEE Transactions on Signal Processing, Vol. 60, Issue 4, April, 201

    Revisiting Complex Moments For 2D Shape Representation and Image Normalization

    Full text link
    When comparing 2D shapes, a key issue is their normalization. Translation and scale are easily taken care of by removing the mean and normalizing the energy. However, defining and computing the orientation of a 2D shape is not so simple. In fact, although for elongated shapes the principal axis can be used to define one of two possible orientations, there is no such tool for general shapes. As we show in the paper, previous approaches fail to compute the orientation of even noiseless observations of simple shapes. We address this problem. In the paper, we show how to uniquely define the orientation of an arbitrary 2D shape, in terms of what we call its Principal Moments. We show that a small subset of these moments suffice to represent the underlying 2D shape and propose a new method to efficiently compute the shape orientation: Principal Moment Analysis. Finally, we discuss how this method can further be applied to normalize grey-level images. Besides the theoretical proof of correctness, we describe experiments demonstrating robustness to noise and illustrating the method with real images.Comment: 69 pages, 20 figure

    Perceived stress in obsessive-compulsive disorder is related with obsessive but not cmpulsive symptoms

    Get PDF
    Obsessiveā€“compulsive disorder (OCD) is achronic psychiatric disorder characterized by recurrent intrusive thoughts and/or repetitive compulsory behaviors. This psychiatric disorder is known to be stress responsive, as symptoms increase during periods of stress but also because stressful events may precede the onset of OCD. However, only a few and inconsistent reports have been published about the stress perception and the stress-response in these patients. Herein, we have characterized the correlations of OCD symptoms with basal serum cortisol levels and scores in a stress perceived questionnaire (PSS-10). The present data reveals that cortisol levels and the stress scores in the PSS-10 were significantly higher in OCD patients that in controls. Moreover, stress levels self-reported by patients using the PSS-10 correlated positively with OCD severity in the Yaleā€“Brown Obsessiveā€“Compulsive Scale (Yā€“BOCS). Interestingly, PSS-10 scores correlated with the obsessive component, but not with the compulsive component, of Yā€“BOCS. These results confirm that stress is relevant in the context of OCD, particularly for the obsessive symptomatology.Pedro Morgado is supported by a fellowship ā€œSFRH/SINTD/60129/2009ā€ funded by FCT ā€“ Foundation for Science and Technology. Supported by FEDER funds through Operational program for competitive factors ā€“ COMPETE and by national funds through FCT ā€“Foundation for Science and Technology to project ā€œPTDC/SAU-NSC/111814/2009.

    Transition from endemic behavior to eradication of malaria due to combined drug therapies: an agent-model approach

    Get PDF
    We introduce an agent-based model describing a susceptible-infectious-susceptible (SIS) system of humans and mosquitoes to predict malaria epidemiological scenarios in realistic biological conditions. Emphasis is given to the transition from endemic behavior to eradication of malaria transmission induced by combined drug therapies acting on both the gametocytemia reduction and on the selective mosquito mortality during parasite development in the mosquito. Our mathematical framework enables to uncover the critical values of the parameters characterizing the effect of each drug therapy. Moreover, our results provide quantitative evidence of what is empirically known: interventions combining gametocytemia reduction through the use of gametocidal drugs, with the selective action of ivermectin during parasite development in the mosquito, may actively promote disease eradication in the long run. In the agent model, the main properties of human-mosquito interactions are implemented as parameters and the model is validated by comparing simulations with real data of malaria incidence collected in the endemic malaria region of Chimoio in Mozambique. Finally, we discuss our findings in light of current drug administration strategies for malaria prevention, that may interfere with human-to-mosquito transmission process.Comment: 12 pages, 6 figure
    • ā€¦
    corecore