17 research outputs found

    Biochemical and Physiological Parameters in Rats Fed with High-Fat Diet: The Protective Effect of Chronic Treatment with Purple Grape Juice (Bordo Variety)

    No full text
    High-fat-diet (HFD) has been related to metabolic and cardiovascular diseases. Consumption of grapes and their byproducts containing phenolic compounds has been reported due to the benefits they produce for human health. The purpose of this study was to investigate the antioxidant and protective effect of chronic intake of purple grape juice on certain biochemical and physiological changes promoted by the consumption of HFD. Forty male rats were randomly divided into four groups to receive standard or HFD diet and/or conventional (CGJ) or organic grape juice (OGJ) for three months. Dietary intake, body weight gain, cardiometabolic parameters, and serum lipoperoxidation were investigated. Results showed that consumption of CGJ and OGJ changed the pattern of food and drink intake of the animals. There was a reduction in the body weight of animals that consumed grape juices and an increase in the weight gain in HFD and OGJ rats. HFD increased abdominal fat and the abdominal fat/weight ratio, and both grape juices prevented these modifications. HFD increased hepatic enzymes levels (aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT)) and reduced urea. Purple grape juices prevented some of these changes. HFD enhanced lipid peroxidation (thiobarbituric acid reactive substances (TBARS)) in serum and CGJ and OGJ prevented this increase. The consumption of purple grape juice has the potential to prevent and ameliorate most of the alterations provoked by HFD, therefore regular intake of grape products could promote beneficial effects

    Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil.

    No full text
    The variations in the chemical composition, and consequently, on the biological activity of the propolis, are associated with its type and geographic origin. Considering this fact, this study evaluated propolis extracts obtained by supercritical extraction (SCO2) and ethanolic extraction (EtOH), in eight samples of different types of propolis (red, green and brown), collected from different regions in Brazil. The content of phenolic compounds, flavonoids, in vitro antioxidant activity (DPPH and ABTS), Artepillin C, p-coumaric acid and antimicrobial activity against two bacteria were determined for all extracts. For the EtOH extracts, the anti-proliferative activity regarding the cell lines of B16F10, were also evaluated. Amongst the samples evaluated, the red propolis from the Brazilian Northeast (states of Sergipe and Alagoas) showed the higher biological potential, as well as the larger content of antioxidant compounds. The best results were shown for the extracts obtained through the conventional extraction method (EtOH). However, the highest concentrations of Artepillin C and p-coumaric acid were identified in the extracts from SCO2, indicating a higher selectivity for the extraction of these compounds. It was verified that the composition and biological activity of the Brazilian propolis vary significantly, depending on the type of sample and geographical area of collection

    SARS-CoV-2 mutations in Brazil: from genomics to putative clinical conditions

    No full text
    Abstract Due to the high rate of transmissibility, Brazil became the new COVID-19 outbreak epicenter and, since then, is being monitored to understand how SARS-CoV-2 mutates and spreads. We combined genomic and structural analysis to evaluate genomes isolated from different regions of Brazil and show that the most prevalent mutations were located in the S, N, ORF3a and ORF6 genes, which are involved in different stages of viral life cycle and its interaction with the host cells. Structural analysis brought to light the positions of these mutations on protein structures, contributing towards studies of selective structure-based drug discovery and vaccine development
    corecore