69 research outputs found

    Exploration of the Lysis Mechanisms of Leukaemic Blasts by Chimaeric T-Cells

    Get PDF
    Adoptive transfer of specific cytotoxic T lymphocytes (CTL) and Cytokine Induced Killer Cells (CIK) following genetic engineering of T-cell receptor zeta hold promising perspective in immunotherapy. In the present work we focused on the mechanisms of anti-tumor action of effectors transduced with an anti-CD19 chimaeric receptor in the context of B-lineage acute lymphoblastic leukemia (B-ALL). Primary B-ALL blasts were efficiently killed by both z-CD19 CTL and z-CD19 CIK effectors. The use of death receptor mediated apoptosis of target cells was excluded since agonists molecules of Fas and TRAIL-receptors failed to induce cell death. Perforin/granzyme pathway was found to be the mechanism of chimaeric effectors mediated killing. Indeed, cytolytic effector molecules perforin as well as granzymes were highly expressed by CTL and CIK. CD19 specific stimulation of transduced effectors was associated with degranulation as attested by CD107 membrane expression and high IFN-γ and TNF-α release. Moreover inhibitors of the perforin-based cytotoxic pathway, Ca2+-chelating agent EGTA and Concanamycin A, almost completely abrogated B-ALL blast killing. In conclusion we show that the cytolysis response of z-CD19 chimaeric effectors is predominantly mediated via perforin/granzyme pathway and is independent of death receptors signaling in primary B-ALL

    Characterization of species-specific genes regulated by E2-2 in human plasmacytoid dendritic cells

    Get PDF
    Dendritic cells (DCs) are sentinels of the immune system and comprise two distinct subsets: conventional DCs (cDCs) and plasmacytoid DCs (pDCs). Human pDCs are distinguished from mouse pDCs phenotypically and functionally. Basic helix-loop-helix protein E2-2 is defined as an essential transcription factor for mouse pDC development, cell fate maintenance and gene programe. It is unknown whether E2-2 regulation contributes to this species-specific difference. Here we investigated the function of E2-2 in human pDCs and screened human-specific genes regulated by E2-2. Reduced E2-2 expression in human pDC cell line GEN2.2 resulted in diminished IFN-α production in response to CpG but elevated antigen presentation capacity. Gene expression profiling showed that E2-2 silence down-regulated pDC signature genes but up-regulated cDC signature genes. Thirty human-specific genes regulated by E2-2 knockdown were identified. Among these genes, we confirmed that expression of Siglec-6 was inhibited by E2-2. Further more, Siglec-6 was expressed at a higher level on a human pDC subset with drastically lower expression of E2-2. Collectively, these results highlight that E2-2 modulates pDC function in a species-specific manner, which may provide insights for pDC development and functions

    Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells

    Get PDF
    Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response

    Innate Sensing of HIV-Infected Cells

    Get PDF
    Cell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions. There are target cell-type differences in the recognition of infected lymphocytes. In primary pDCs and pDC-like cells, recognition occurs in large part through TLR7, as demonstrated by the use of inhibitors and by TLR7 silencing. Donor cells expressing replication-defective viruses, carrying mutated reverse transcriptase, integrase or nucleocapsid proteins induced IFN production by target cells as potently as wild-type virus. In contrast, Env-deleted or fusion defective HIV-1 mutants were less efficient, suggesting that in addition to TLR7, cytoplasmic cellular sensors may also mediate sensing of infected cells. Furthermore, in a model of TLR7-negative cells, we demonstrate that the IRF3 pathway, through a process requiring access of incoming viral material to the cytoplasm, allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs through both endosomal and cytoplasmic pathways. Characterization of the mechanisms of innate recognition of HIV-infected cells allows a better understanding of the pathogenic and exacerbated immunologic events associated with HIV infection

    Etude pré-clinique pour la mise au point d'une thérapie cellulaire antitumorale utilisant les cellules présentatrices d'antigènes dans les lymphomes B non Hodgkiniens

    No full text
    L'immunothérapie utilisant les cellules présentatrices d'Ag (APC) pour induire un réponse Iymphocytaire est une stratégie prometteuse dans le traitement des cancers. Cependant plusieurs questions restent en suspens pour améliorer les protocoles cliniques : Quelle APC induit la meilleure réponse ? Comment les Ag doivent-ils être délivrés ? Sous forme de cellules apoptotiques, nécrotiques, ou opsonisées? Dans cette étude pré-clinique dans le lymphome B, nous avons mis au point des techniques de purification de cellules B, et de préparation des cellules pour les induire en apoptose, en nécrose, ou les opsoniser. Nous avons ensuite étudié les macrophages, les cellules dendritiques myéloïdes et plasmacytoïdes pour leur capacité de capture et de cross-présentation d'Ag provenant des différentes préparations de cellulaires. Nos travaux constituent une source de données pour la mise au point d'un protocole clinique dans le lymphome et permettent de mieux comprendre le rôle des PDC dans l'immunité.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Étude des mécanismes d'action de la PhotoChimiothérapie Extra-corporelle chez l'Homme

    No full text
    La photochimiothérapie extracorporelle (PCE) est une thérapie cellulaire prometteuse utilisée avec succès dans le traitement de pathologies impliquant des lymphocytes T (LT) telles que les lymphomes T cutanés et la GvHD. Contrairement aux immunosuppresseurs, la PCE semble induire une immunomodulation dirigée spécifiquement à l'encontre des LT pathogènes sans immunosuppression généralisée, cependant son mode d'action reste inconnu. Afin de comprendre ces mécanismes d'action, nous avons caractérisé dans un premier temps l'effet de la PCE sur la fonctionnalité des monocytes présents en forte proportion dans l'échantillon traité. Ils entrent en apoptose lente et les cellules encore vivantes conservent leur propriétés fonctionnelles. Dans la GvHD, nous avons montré qu'après PCE, les LT pathogènes activés entraient plus rapidement en apoptose que les LT normaux au repos. L'apoptose des LT activés est immunogène et induit la maturation des cellules dendritiques, leur conférant des propriétés de stimulation T plus fortes tout en diminuant la proportion de T régulateurs induits. Nous développons un modèle in vitro afin de mettre en évidence l'induction d'une réponse anti-clonotypique fortement suggérée par nos résultats. Enfin, en collaborant avec des pédiatres oncologues, nous avons participé au développement d'un modèle in vitro pré-clinique validant un protocole allégé de la technique pour le traitement de la GvHD en pédiatrie, conduisant à l'ouverture d'un essai clinique. Nos travaux constituent une étape clé dans la compréhension des mécanismes d'action de la PCE et contribuent à l'amélioration des pratiques cliniques et ainsi de la qualité de vie des patients.Extracorporeal Photochemotherapy (ECP) is a promising cell therapy currently used in the treatment of T cell-mediated diseases such as Cutaneous T cell lymphoma and GvHD. Conversely to immunosuppressive drugs, ECP appears to induce an immunomodulation specifically directed toward pathogenic T cells, without causing generalized immunosuppression. However, its mechanisms of action are not well understood. To gain further insight in these mechanisms, we first characterized the effects of ECP on Monocytes which represent a large proportion of treated cells. ECP induces a slow apoptosis of monocytes while surviving treated cells conserve their functionalities. In GvHD, we show that following ECP, pathogenic activated T cells undergo faster apoptosis than normal resting T cells. ECP induced apoptosis is immunogenic and activated-treated cells trigger dendritic cell maturation, increasing their capacity to stimulate T cells with a reduced proportion of induced-regulatory T cells. We are developing an in vitro model to identify an anti-clonotypic response which is strongly suggested by our data. Finally, in collaboration with Paediatric oncologists, we participated in the development of a pre-clinical in vitro model validating a less invasive protocol for the technique for treating paediatric GvHD patients. A clinical trial has been started to evaluate this protocol. This work represents a key step in the understanding of the mechanisms of action of ECP and contributes to an improvement of clinical practices and thus, a better patients' quality of life.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Stratégies innovantes de vectorisation d'antigènes dans les cellules dendritiques

    No full text
    Problème de santé mondial, le cancer tue chaque année des milliers de personnes en France, malgré de réels progrès dans les traitements médicaux. Parmi ceux-ci, l'immunothérapie qui vise à stimuler le système immunitaire afin qu'il reconnaisse et élimine les cellules tumorales, fait l'objet de nombreuses études, notamment depuis la découverte de lymphocytes T spécifiques d'antigènes tumoraux. Bien que les premiers essais d'activation de lymphocytes T cytotoxiques réalisés in vitro et in vivo chez l'animal avec des peptides tumoraux ou des cellules tumorales aient été encourageants, les essais cliniques de vaccination qui ont succédé ont globalement échoué. Un nouvel axe de recherche est apparu avec l'amélioration des connaissances sur la biologie des cellules dendritiques myéloïdes (mDC), dont le rôle est primordial. En effet, les mDC sont capables d'initier les réponses immunes spécifiques car elles peuvent activer les lymphocytes T naïfs et restimuler les lymphocytes mémoires avec une grande efficacité. Les mDC sont, dès lors, devenues les candidates idéales pour l'immunothérapie anti-tumorale et les essais se sont multipliés. A nouveau, alors que les expériences réalisées in vitro et in vivo chez l'animal étaient très encourageantes, les essais cliniques ont été décevants ; l'injection de mDC chargées avec des antigènes tumoraux sous différentes formes n'induit que peu de réponses cliniques. Notre hypothèse est que l'efficacité de la vaccination anti-tumorale pourrait être améliorée par une optimisation du ciblage des antigènes tumoraux vers les DC in vivo. Dans ce travail, nous avons développé de nouvelles stratégies visant à vectoriser les antigènes tumoraux pour les délivrer efficacement, voire spécifiquement aux cellules dendritiques. Dans un premier temps, nous avons ciblé le récepteur au mannose, exprimé par les mDC, grâce à un vecteur chimique (le RAFT) qui permet d'accrocher à la fois des résidus mannose et des antigènes tumoraux (melan-A). Nous avons montré que le RAFT(Man)16-melan-A était efficacement endocyté par les mDC et que le peptide tumoral était cross-presenté aux lymphocytes T spécifiques. Dans un second temps, nous avons opté pour une stratégie permettant d'améliorer la stabilité de l'antigène tumoral et de le délivrer dans le cytosol des cellules en utilisant des virosomes. Les virosomes sont des particules dérivées du virus de l'Influenza, dont le matériel génétique a été retiré mais qui ont conservé les protéines membranaires du virus, et qui ont la particularité de pouvoir encapsuler des peptides ou des protéines. Grâce à la présence de l'hémagglutinine, ils peuvent être endocytés et ainsi délivrer leur contenu dans le cytoplasme de la cellule. Nous avons testé un virosome encapsulant le peptide tumoral melan-A et nous avons montré que les mDC étaient capables de présenter l'antigène tumoral aux lymphocytes T et de les activer efficacement. Parallèlement, nous avons réalisé la même étude sur une autre population de cellules dendritiques, les cellules dendritiques plasmocytoïdes (pDC). Ces cellules, encore largement méconnues, jouent un rôle unique dans l'immunité anti-virale grâce à la sécrétion d'IFN-a. Dans ces expériences, réalisées avec une lignée de pDC développée dans notre laboratoire à partir des cellules d'un patient atteint d'une leucémie à pDC (lignée GEN2.2), nous avons montré que les pDC sont également capables de présenter un antigène encapsulé dans un virosome et d'activer efficacement les lymphocytes T spécifiques. Nous avons, par ailleurs, approfondi notre étude sur les fonctions biologiques des pDC dans l'immunité antivirale, notamment leur capacité à cross-présenter des antigènes issus de l'endocytose de cellules traitées par un virus. Dans notre modèle, nous avons montré que des lymphocytes B incubés avec le virus de l'Influenza inactivé étaient phagocytés par les pDC, que les pDC étaient alors activées et que les antigènes viraux cross-présentés activaient des lymphocytes T spécifiques. Cette caractéristique confère un rôle potentiel dans l'initiation des réponses immunes au même titre que son homologue myéloïde, et un rôle intéressant dans l'immunité anti-tumorale. Ainsi, à travers ce travail, nous avons développé des stratégies innovantes de vectorisation d'antigènes sur les cellules dendritiques en utilisant de nouveaux outils chimiques, viraux ou cellulaires. La validation in vitro de ces outils devra permettre, dorénavant, de mettre en place des expérimentations chez l'animal pour démontrer l'efficacité in vivo de ces stratégies.ln the aim of immunotherapy, we developped innovative strategies of antigen vectorization into dendritic cells. First, we targeted the mannose receptor expressed on myeloid dendritic cells with a chemical vector (RAFT) wich enables both graft mannose residues an tumoral antigens (melan-A). We demonstrated that RAFT(Man)wmelan-A was efficiently endocyted by mDG and that tumoral peptide wa crosspresented to specifie T cells. Secondly, we worked with influenza virus derived particles, called virosomes, wich genetic material has been removed and membrane proteins conserved. Virosomes can encapsulate proteins or antigens in their lumen. We demonstrated thé pDG can present virosome encapsulated antigens and activate specifie T cells. Finally, we explored biological functions of pDG in the context of antiviral immunity. ln our model, we showed that inactivated influenza virus treated B lymphocytes were phagocyted by pDOl and that pDC were activated. Besides, we observed that viral antigens were crosspresented to specifie T cells.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Les cellules dendritiques plasmacytoïdes dans le cancer à travers le rôle de TRAIL

    No full text
    Les cellules dendritiques plasmacytoïdes (PDC) représentent une nouvelle entité distincte de cellules dendritiques. Elles peuvent sécréter de grandes quantités d'interféron de type I après stimulation par un virus ou des produits bactériens tels que les CpG ODN grâce à leur expression sélective des Toll-like récepteurs (TLR)7 et 9. Notre laboratoire a récemment développé une lignée de PDC (GEN2.2) à partir de leucémies à PDC (LPDC), qui résistent aux thérapies conventionnelles. Les GEN2.2 partagent la plupart des caractéristiques phénotypiques et fonctionnelles des PDC normales. Nous avons d'abord utilisé cette lignée comme modèle de LPDC et nous montrons qu'elles sont sensibles à l'apoptose induite par TRAIL (TNF-Related Apoptosis-Inducing Ligand) via l'expression du récepteur DR5, comme la plupart des LPDC, alors que les PDC normales ne le sont pas, ce qui permettrait la mise en place de thérapies des leucémies à PDC utilisant des agonistes de TRAIL. Les PDC normales sont difficiles à isoler ou générer. Nous avons donc ensuite utilisé la lignée GEN2.2 comme modèle de PDC normales. Nous avons ainsi découvert que ces cellules, une fois activées par des ligands des TLR7 et 9, acquièrent une fonction cytotoxique via l'expression de TRAIL et peuvent tuer des cellules tumorales. Les PDC pourraient donc jouer un rôle crucial dans l'éradication des cancers après activation. Enfin, nous avons cherché à préciser les mécanismes moléculaires d'induction de TRAIL dans les PDC après activation par des ligands des TLR7 et 9. L'ensemble des travaux suggère que les PDC pourraient représenter une cible de choix dans le développement de nouvelles approches thérapeutiques anti-tumoralesPlasmacytoid dendritic cells (PDC) represent a new distinct entity of dendritic cells. They are able to secrete high amounts of type I interferon upon viral exposure or stimulation by bacterial products such as CpG ODN due to their selective expression of Toll-like receptors (TLR)7 et 9. Our laboratory has recently developed a PDC cell line (GEN2.2) derived from PDC leukemia (LPDC), which resist to conventional therapy. GEN2.2 share most of the phenotypic and functional features of normal PDC. We first used this cell line as a LPDC model and we show that they are sensitive to TRAIL (TNF-Related Apoptosis-Inducing Ligand)-induced apoptosis via the expression of the receptor DR5, like most of the LPDC, whereas normal PDC are not, allowing the setting of PDC leukaemia therapies using TRAIL agonists. Normal PDC are difficult to isolate or to generate. We then used the GEN2.2 cell line as a normal PDC model. We thus discovered that these cells, once activated by TLR7 and 9 ligands, acquire a cytotoxic function via TRAIL expression and are able to kill tumoral cells. Therefore, PDC could play a crucial role in eradicating cancer, after activation. Finally, we tried to specify the molecular mechanisms for TRAIL induction in PDC upon activation with TLR7 and 9 ligands. Altogether, this work suggest that PDC could represent a key target in the development of new antitumoral therapeutic approachesGRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Cellules dendritiques plasmocytoïdes (phénotype et fonction des leucémies aiguës dérivées de ces cellules)

    No full text
    BESANCON-BU Médecine pharmacie (250562102) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Cellules dendritiques plasmocytoïdes et infections virales (rôle physiopathologique et potentiel vaccinal)

    No full text
    La réponse immune lors d'une infection par le VHB est essentielle pour éliminer le virus. Le virus module le système immunitaire pour échapper à son contrôle. Le mécanisme par lequel le virus module l'immunité est encore mal connu. Les cellules dendritiques plasmocytoides (pDC) jouent un rôle crucial dans l'immunité antivirale de part leur capacité à capturer et apprêter les antigènes viraux afin d'induire une réponse immune adaptative. Les pDCs représentent un bon potentiel pour restaurer une immunité anti-VHB fonctionnelle, mais le VHB pourrait moduler les pDCs pour échapper au contrôle immunitaire. Dans une première partie, nous avons évalué le potentiel des pDCs à restaurer l'immunité anti-VHB en contexte d'hépatite B chronique. Nous avons utilisé une lignée de pDCs HLA-A*0201+ chargée avec des peptides HLA-A*0201 restreints dérivés des antigènes HBc et HBs du virus afin d'amplifier des lymphocytes T spécifiques ex vivo à partir de cellules de patients atteints d'hépatite B chronique. Nous avons ensuite établi un modèle de souris humanisées (Hepato-HuPBL) afin d'évaluer le potentiel thérapeutique de la stratégie in vivo. La stimulation de PBMC ou de lymphocytes infiltrant le foie (LIL) issus de patients HLA-A*0201+ par la lignée de pDC chargée avec le peptide HBc a permis d'amplifier des lymphocytes T spécifiques de HBc et fonctionnels dans 45,8% des cas. Le groupe de non répondeurs était caractérisé par la présence d'Ag HBe ou un plus fort niveau de lymphocytes T régulateurs. L'efficacité thérapeutique du vaccin de pDC a été évaluée dans un modèle de souris NOD-SCID b2m-/- reconstituées avec des PBMC issus de patient VHB et xenotransplantées avec des hépatocytes humains transfectés avec le VHB. La vaccination de ces souris avec la lignée de pDC chargée avec les peptides HBc et HBs a permis l'amplification de lymphocytes T CD8 spécifiques du VHB capables de lyser spécifiquement les hépatocytes infectés in vivo. Ainsi, la lignée de pDC chargée avec des peptides dérivés du VHB est capable d'amplifier des lymphocytes T CD8 spécifiques du VHB et fonctionnels in vitro et in vivo. Cette nouvelle stratégie d'immunothérapie pourrait donc restaurer une immunité antivirale et permettre l'élimination du virus chez les patients atteints d'hépatite B chronique. Dans une deuxième partie, nous avons évalué le rôle physiopathologique des pDCs au cours de l'infection chronique par le VHB et les conséquences fonctionnelles sur le cross-talk pDC/NK. Des défauts fonctionnels des pDCs et des cellules NK ont été observé chez les patients atteints d'hépatite B chronique. Cependant le cross-talk pDC/NK ainsi que les mécanismes en jeu n'ont pas encore été élucidé. Nous avons étudié le phénotype et la capacité de répondre à une stimulation TLR-L des pDCs de patients comparé aux pDCs de donneurs sains puis nous avons étudié les conséquences sur le cross-talk entre pDCs de patients (virémiques ou avirémiques) et cellules NK hétérologues. Les pDCs de patients montrent un phénotype plus activé que les pDCs de donneurs sains mais ne sont pas capables de répondre à une stimulation TLR9-L. De plus, les pDCs de patients virémiques ne sont pas capables d'activer les fonctions cytotoxiques des cellules NK. Cette perturbation du cross-talk pDC/NK semble liée à un défaut de production d'IFNa et d'expression d'OX40L par les pDCs de patients virémiques, ainsi qu'à la présence d'une quantité importante d'IP-10 dans le plasma des patients. Ainsi, le VHB pourrait échapper à l'immunité en altérant la fonction des pDCs et perturbant le cross-talk pDC/NK par un mécanisme dépendant de IP-10, OX40L et IFNa.The immune control of HBV infection is essential for viral clearance. The virus is able to modulate the immune system to escape this control. The mechanisms involved remain largely unknown. Plasmacytoid dendritic cells (pDC) play a crucial role in anti viral immunity due to their ability to capture and process viral antigens and subsequently induce adaptive immune responses. PDCs are therefore promising to restore functional anti HBV immunity, but HBV could modulate the pDCs to escape the immune control. First, we investigated the potential of pDCs in triggering anti viral immunity against HBV during chronic infection. We used a HLA A*0201+ pDC line loaded with HLA A*0201-restricted peptides derived from HBc/HBs antigens to amplify specific T cells ex vivo from chronic HBV patients. Then we established an Hepato-HuPBL humanized mouse model to address the therapeutic potential of the strategy in vivo. Stimulation of PBMC or liver-infiltrated lymphocytes from HLA A*0201+ chronic HBV patients by the HBc peptide-loaded pDC line elicited functional HBV-specific CD8 T cells in 45.8% of cases. The non-responder group of patients was characterised by the presence of HBe Ag or higher level of regulatory T cells. The therapeutic efficacy of the pDC-based vaccine was evaluated in NOD-SCID b2m-/- mice reconstituted with HBV patients' PBMC and xenotransplanted with human HBV-transfected hepatocytes. Vaccination of these mice with the HBc/HBs peptide loaded pDC line elicited HBV-specific T cells in vivo able to specifically lyses infected hepatocytes. Thus pDCs loaded with HBV derived peptides can elicit functional virus-specific T cells in vitro and in vivo. This new cell-based immunotherapeutic strategy could restore functional anti viral immunity and clear the virus in chronic HBV patients. In the second part, we investigated the pathophysiological role of pDCs from chronic HBV patients and the functional consequences on pDC-NK cross-talk. Functional impairment have been observed in both pDC and NK cells in chronic HBV patients. However, the cross-talk pDC/NK and the mechanisms involved have not been elucidated. We studied the phenotype and the ability to respond to a TLR-L stimulation of the pDCs from HBV patients compared to healthy donors, and we investigated the consequences on the cross-talk between patients' (viremic or aviremic) pDCs and heterologous NK cells. PDCs show higher levels of activation in patients compared to healthy donors but were not able to respond to TLR9-L stimulation. In addition, pDCs from viremic chronic HBV patients failed to trigger a normal NK cytolytic function after TLR9-L stimulation. This pDC-dependant NK dysfunction was related to impaired IFNa secretion and OX40L expression by pDCs from viremic patients, and related to high plasma IP-10 levels found in patients. In conclusion HBV could escape the immune system by impairing pDC function and subsequent pDC/NK cross-talk by a mechanism involving IP10, OX40L and IFNa.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore