1,582 research outputs found

    Understanding the Latent Space of Diffusion Models through the Lens of Riemannian Geometry

    Full text link
    Despite the success of diffusion models (DMs), we still lack a thorough understanding of their latent space. To understand the latent space xtX\mathbf{x}_t \in \mathcal{X}, we analyze them from a geometrical perspective. Specifically, we utilize the pullback metric to find the local latent basis in X\mathcal{X} and their corresponding local tangent basis in H\mathcal{H}, the intermediate feature maps of DMs. The discovered latent basis enables unsupervised image editing capability through latent space traversal. We investigate the discovered structure from two perspectives. First, we examine how geometric structure evolves over diffusion timesteps. Through analysis, we show that 1) the model focuses on low-frequency components early in the generative process and attunes to high-frequency details later; 2) At early timesteps, different samples share similar tangent spaces; and 3) The simpler datasets that DMs trained on, the more consistent the tangent space for each timestep. Second, we investigate how the geometric structure changes based on text conditioning in Stable Diffusion. The results show that 1) similar prompts yield comparable tangent spaces; and 2) the model depends less on text conditions in later timesteps. To the best of our knowledge, this paper is the first to present image editing through x\mathbf{x}-space traversal and provide thorough analyses of the latent structure of DMs

    Korea’s technical assistance for better governance

    Get PDF
    노트 : - Paper for International Conference on U.S.-Korea Dialogue on Strategies for Effective Development Cooperation - Organized by Asia Foundation October 17-18, 2011 Seoul, Korea 행사명 : International Conference on U.S.-Korea Dialogue on Strategies for Effective Development Cooperatio

    Perspectives of Chitin Deacetylase Research

    Get PDF

    Changes in activity and isozyme patterns of peroxidase and chitinase in kiwifruit pollen

    Get PDF
    In this study, changes in activity and isozyme patterns of peroxidase (POD) and chitinase in kiwifruit (Actinidia chinensis) pollen were investigated under different storage conditions. Although residual activity was detected in heat-treated pollen, changes in POD activity were observed due to difference in storage conditions as revealed by preliminary studies in which pollen germination varied with different storage conditions. POD activity of kiwifruit pollen increased as proportions of viable pollen increased, indicating a positive correlation (R2=0.993) between pollen viability and POD activity. There was a detectable difference in the relative activity of POD enzyme between heat-treated and viable pollen. Decoloration of Congo Red was observed in germination medium which fresh pollen was cultured. The activity of individual chitinase isozymes present in kiwifruit pollen differed depending on storage conditions, which had a direct impact on pollen vigor. Although direct evidence showing that chitinase isozymes are implicated in pollen vigor is still uncertain, distinction of isozymes may facilitate more precise identification of viable pollen which possesses germination potential from non-viable pollen. Taken together, these results suggest that monitoring the activity of POD and chitinase can be an attractive alternative to evaluate pollen vigor in kiwifruit

    Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    Get PDF
    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins

    Down-regulation of ARC contributes to vulnerability of hippocampal neurons to ischemia/hypoxia

    Get PDF
    AbstractARC is a caspase recruitment domain-containing molecule that plays an important role in the regulation of apoptosis. We examined ARC expression during neuronal cell death following ischemic injury in vivo and in vitro. After exposure to transient global ischemic conditions, the expression of ARC was substantially reduced in the CA1 region of hippocampus in a time-dependent manner with concomitant increase of TUNEL-positive cells. Quantitative analysis using Western blotting exhibited that most of ARC protein disappeared in the cultured hippocampal neurons exposed to hypoxia for 12 h and showing 60% cell viability. Forced expression of ARC in the primary cultures of hippocampal neurons or B103 neuronal cells significantly reduced hypoxia-induced cell death. Further, the C-terminal P/E rich region of ARC was effective to attenuate hypoxic insults. These results suggest that down-regulation of ARC expression in hippocampal neurons may contribute to neuronal death induced by ischemia/hypoxia

    Non-coding RNAs shuttled via exosomes reshape the hypoxic tumor microenvironment

    Get PDF
    Exosomes are small extracellular vesicles secreted by almost all the cells. Molecular cargos of exosomes can partially reflect the characteristics of originating cells. Exosome-mediated cell-to-cell interactions in the microenvironment are critical in cancer progression. Hypoxia, a key pro-cancerous feature of the tumor microenvironment, alters the releasing and contents of exosomes. A growing body of evidence shows that hypoxia induces more aggressive phenotypes in cancer. Of note, non-coding RNAs shuttled in hypoxic tumor-derived exosomes have been demonstrated as fundamental molecules in regulating cancer biology and remodeling tumor microenvironment. Furthermore, these hypoxic tumor-derived exosomal non-coding RNAs can be detected in the body fluids, serving as promising diagnostic and prognostic biomarkers. The current review discusses changes in cancer behaviors regulated by exosomes-secreted non-coding RNAs under hypoxic conditions.This work was supported by the grant from Samsung Research Funding Center of Samsung Electronics (project number: SPFC-MA1501-51). WW is a recipient of China Scholarship Council scholarship (CSC number: 201908260030)
    corecore