113 research outputs found
Comparison between the Temperature Measurements by TIMED/SABER and Lidar in the Mid-Latitude
Comparisons of monthly-mean nighttime temperature profiles observed by the Sodium Lidar at Colorado State University and TIMED/SABER over passes are made. In the altitude range from 85 km to about 100 km, the two observations are in excellent agreement. Though within each other s error bars, important differences occur below 85 km in the entire year and above 100 km in the summer season. Possible reasons for these difference are high photon noise below 85 km in lidar observations, and less than accurate assumptions in the concentration of important chemical species like oxygen (and its quenching rate) in the SABER retrieval above 100 km. However, the two techniques both show the two-level mesopause thermal structure, with the times of change from one level to the other in excellent agreement. Comparison indicates that the high-level (winter) mesopause altitudes are also in excellent agreement between the two observations, though some difference may exist in the low-level (summer) mesopause altitudes between ground-based and satellite-borne data
Wavelet and cross correlation analysis on some climatology parameters of Nepal
This study has been performed to understand the relationship between sunspot numbers (SSN) with climatology related parameters like temperature and rainfall from 1901 to 2016. The spectral characteristics of sunspot numbers, temperature and rainfall have been observed using continuous wavelet transform. Cross-correlation analyses were also performed to find any relation among temperature, rainfall, and sunspot numbers. The 9–11 year periodicity of sunspot numbers confirmed by wavelet transform in annual scale. The periodicity of high-frequency signals is identified between 4 to 11 years whereas the low frequencies signal is found throughout the periods of observation for temperature. Similarly, it is clear that there is more concentration of power between 8–16 years for rainfall. Cross-correlation analysis shows that the sunspot numbers is highly correlated with rainfall and temperature (correlation coefficient ~ 0.8054). The time lag relationship resulted in the almost simultaneous linear relationship between the temperature, rainfall, and the SSN tendency. The development of convective motions over the subtropics might be affected by the time rate of change of SSN combined with the surface temperature changes of diverse time scales. The convective motions were mostly controlled by the available amount of water vapor and the stability of the atmosphere that had a strong connection with the heat capacity of the concerned region. To produce more authentic findings for policy implications, further comprehensive and appropriate research can be undertaken and implemented in this very important field.
BIBECHANA 18 (2) (2021) 105-11
Inversion of O21.27 μm nightglow emissions: A climatological analysis using satellite Limb-Viewed spectra and Harmonic analysis method
This study employs a linear inversion algorithm to retrieve volume emission rates (VERs) of molecular O2 nightglow at 1.27 μm, utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter for Atmospheric for CHartographY (SCIAMACHY) payload on board the Envisat satellite. The retrieved results are compared with VERs data from the SABER payload on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, exhibiting consistency. This will help to facilitate accurate revelation of spatial distribution and periodic variation in O2 nightglow. VERs are extracted monthly within the altitude range of 75−110 km from 2002 to 2012, yielding a climatology of spatial and temporal distributions. The meridional structure exhibits two maxima, at the equator and at 45°N. Between August and October, the VERs exhibit a meridional bimodal structure, with the weaker one above the equator and the stronger one above 45°N. In April, the VERs reach their annual maximum. Additionally, harmonic analysis reveals significant temporal variations on different scales. The emission shows characteristics of annual and semi-annual variation, and a non-linear long-term trend associated with solar cycle activity
Wavelet and cross correlation analysis on some climatology parameters of Nepal
This study has been performed to understand the relationship between sunspot numbers (SSN) with climatology related parameters like temperature and rainfall from 1901 to 2016. The spectral characteristics of sunspot numbers, temperature and rainfall have been observed using continuous wavelet transform. Cross-correlation analyses were also performed to find any relation among temperature, rainfall, and sunspot numbers. The 9–11 year periodicity of sunspot numbers confirmed by wavelet transform in annual scale. The periodicity of high-frequency signals is identified between 4 to 11 years whereas the low frequencies signal is found throughout the periods of observation for temperature. Similarly, it is clear that there is more concentration of power between 8–16 years for rainfall. Cross-correlation analysis shows that the sunspot numbers is highly correlated with rainfall and temperature (correlation coefficient ~ 0.8054). The time lag relationship resulted in the almost simultaneous linear relationship between the temperature, rainfall, and the SSN tendency. The development of convective motions over the subtropics might be affected by the time rate of change of SSN combined with the surface temperature changes of diverse time scales. The convective motions were mostly controlled by the available amount of water vapor and the stability of the atmosphere that had a strong connection with the heat capacity of the concerned region. To produce more authentic findings for policy implications, further comprehensive and appropriate research can be undertaken and implemented in this very important field.
BIBECHANA 18 (2) (2021) 105-11
Modulation of food intake by mTOR signalling in the dorsal motor nucleus of the vagus in male rats: focus on ghrelin and nesfatin‐1
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101864/1/expphysiol.2013.074930.pd
Enamel remineralization via poly(amido amine) and adhesive resin containing calcium phosphate nanoparticles
Objectives:The objective of this study was to investigate enamel remineralization using salivary statherin pro-tein-inspired poly(amidoamine) dendrimer (SN15-PAMAM) and adhesive containing nanoparticles of amor-phous calcium phosphate (NACP) in a cyclic artificial saliva/demineralizing solution for thefirst time.Methods:The enamel shear bond strengths of NACP adhesives were measured compared to commercial adhesive(Scotchbond Multi-Purpose, 3 M). Adhesive disks containing NACP were tested for calcium (Ca) and phosphorus(P) ions release. Four groups were tested: (1) enamel control, (2) enamel with NACP, (3) enamel with SN15-PAMAM, and (4) enamel with SN15-PAMAM + NACP. The specimens were treated with cyclic artificial saliva/demineralizing solution for 28 days. The remineralized enamel specimens were examined by surface and cross-sectional hardness test.Results:NACP adhesive yielded a similar shear bond strength to commercial control (Scotchbond Multi-Purpose,3 M). NACP adhesive released high levels of Ca and P ions. At 28 days, the enamel hardness of SN15-PAMAM +NACP group was 2.89 ± 0.13 GPa, significantly higher than that of control group (1.46 ± 0.10 GPa) (p< 0.05).SN15-PAMAM + NACP increased the enamel cross-sectional hardness at 28 days; at 25μm, enamel cross-sectional hardness was 90 % higher than that of control group (p< 0.05).Significance:The novel SN15-PAMAM + NACP adhesive method could achieve 90 % higher enamel reminer-alization of the artificial caries than the control under acid challenge for thefirst time. This method is promisingfor use after tooth cavity preparation, or as a coating on enamel with white spot lesions (WSLs) for prevention, toreduce secondary caries, prevent caries procession and protect tooth structures
Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 2. Nonmigrating tide
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94716/1/jgra18976.pd
- …