5 research outputs found

    An anti-CTLA-4 heavy chain-only antibody with enhanced Treg depletion shows excellent preclinical efficacy and safety profile

    Get PDF
    The value of anti-CTLA-4 antibodies in cancer therapy is well established. However, the broad application of currently available anti-CTLA-4 therapeutic antibodies is hampered by their narrow therapeutic index. It is therefore challenging and attractive to develop the next generation of anti-CTLA-4 therapeutics with improved safety and efficacy. To this end, we generated fully human heavy chain-only antibodies (HCAbs) against CTLA-4. The hIgG1 Fc domain of the top candidate, HCAb 4003-1, was further engineered to enhance its regulatory T (Treg) cell depletion effect and to decrease its half-life, resulting in HCAb 4003-2. We tested these HCAbs in in vitro and in vivo experiments in comparison with ipilimumab and other anti-CTLA4 antibodies. The results show that human HCAb 4003-2 binds human CTLA-4 with high affinity and potently blocks the binding of B7-1 (CD80) and B7-2 (CD86) to CTLA-4. The results also show efficient tumor penetration. HCAb 4003-2 exhibits enhanced antibodydependent cellular cytotoxicity function, lower serum exposure, and more potent antitumor activity than ipilimumab in murine tumor models, which is partly driven by a substantial depletion of intratumoral Tregs. Importantly, the enhanced efficacy combined with the shorter serum half-life and less systemic drug exposure in vivo potentially provides an improved therapeutic window in cynomolgus monkeys and preliminary clinical applications. With its augmented efficacy via Treg depletion and improved safety profile, HCAb 4003-2 is a promising candidate for the development of next generation anti-CTLA-4 therapy

    Identification and optimization of novel 2-(4-oxo-2-aryl-quinazolin-3(4H)-yl)acetamide vasopressin V3 (V1b) receptor antagonists

    No full text
    The discovery, synthesis, and preliminary structure–activity relationship (SAR) of a novel class of vasopressin V3 (V1b) receptor antagonists is described. Compound 1, identified by high throughput screening of a diverse, three million-member compound collection, prepared using ECLiPS™ technology, had good activity in a V3 binding assay (IC50 = 0.20 μM), but less than desirable physicochemical properties. Optimization of compound 1 yielded potent analogs 19 (IC50 = 0.31 μM) and 24 (IC50 = 0.12 μM) with improved drug-like characteristics

    Synthesis and SAR studies of novel 2-(4-oxo-2-aryl-quinazolin-3(4H)-yl)acetamide vasopressin V1b receptor antagonists

    No full text
    Synthesis and structure–activity relationships (SAR) of a novel series of vasopressin V1b (V3) antagonists are described. 2-(4-Oxo-2-aryl-quinazolin-3(4H)-yl)acetamides have been identified with low nanomolar affinity for the V1b receptor and good selectivity with respect to related receptors V1a, V2 and oxytocin (OT). Optimised compound 12j demonstrates a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction
    corecore