101 research outputs found

    Separate DOD and DOA Estimation for Bistatic MIMO Radar

    Get PDF
    A novel MUSIC-type algorithm is derived in this paper for the direction of departure (DOD) and direction of arrival (DOA) estimation in a bistatic MIMO radar. Through rearranging the received signal matrix, we illustrate that the DOD and the DOA can be separately estimated. Compared with conventional MUSIC-type algorithms, the proposed separate MUSIC algorithm can avoid the interference between DOD and DOA estimations effectively. Therefore, it is expected to give a better angle estimation performance and have a much lower computational complexity. Meanwhile, we demonstrate that our method is also effective for coherent targets in MIMO radar. Simulation results verify the efficiency of the proposed method, particularly when the signal-to-noise ratio (SNR) is low and/or the number of snapshots is small

    Improving tidal turbine array performance through the optimisation of layout and yaw angles

    Get PDF
    Tidal stream currents change in magnitude and direction during flood and ebb tides. Setting the most appropriate yaw angles for a tidal turbine is not only important to account for the performance of a single turbine, but can also be significant for the interactions between the turbines within an array. In this paper, a partial differentiation equation (PDE) constrained optimisation approach is established based on the Thetis coastal ocean modelling framework. The PDE constraint takes the form here of the two-dimensional, depth-averaged shallow water equations which are used to simulate tidal elevations and currents in the presence of tidal stream turbine arrays. The Sequential Least Squares Programming (SLSQP) algorithm is applied with a gradient obtained via the adjoint method in order to perform array design optimisation. An idealised rectangular channel test case is studied to demonstrate this optimisation framework. Located in the centre of the computational domain, arrays comprised of 12 turbines are tested in aligned and staggered layouts. The setups are initially optimised based on their yaw angles alone. In turn, turbine coordinates and yaw angles are also optimized simultaneously. Results indicate that for an aligned turbine array case under steady state conditions, the energy output can be increased by approximately 80\% when considering yaw angle optimisation alone. For the staggered turbine array, the increase is approximately 30\%. The yaw optimised staggered array is able to outperform the yaw optimised aligned array by approximately 8\%. If both layout and the yaw angles of the turbines are considered within the optimisation then the increase is more significant compared with optimising yaw angle alone

    Numerical simulation of solitary wave propagation over a steady current

    Get PDF
    YesA two-dimensional numerical model is developed to study the propagation of a solitary wave in the presence of a steady current flow. The numerical model is based on the Reynolds-averaged Navier-Stokes (RANS) equations with a k-ε turbulence closure scheme and an internal wave-maker method. To capture the air-water interface, the volume of fluid (VOF) method is used in the numerical simulation. The current flow is initialized by imposing a steady inlet velocity on one computational domain end and a constant pressure outlet on the other end. The desired wave is generated by an internal wave-maker. The propagation of a solitary wave travelling with a following/opposing current is simulated. The effects of the current velocity on the solitary wave motion are investigated. The results show that the solitary wave has a smaller wave height, larger wave width and higher travelling speed after interacting with a following current. Contrariwise, the solitary wave becomes higher with a smaller wave width and lower travelling speed with an opposing current. The regression equations for predicting the wave height, wave width and travelling speed of the resulting solitary wave are for practical engineering applications. The impacts of current flow on the induced velocity and the turbulent kinetic energy (TKE) of a solitary wave are also investigated.National Natural Science Foundation of China Grant #51209083, #51137002 and #41176073, the Natural Science Foundation of Jiangsu Province (China) Grant #BK2011026, the 111 Project under Grant No. B12032, the Fundamental Research Funds for the Central University, China (2013B31614), and the Carnegie Trust for Scottish Universitie

    Improving tidal turbine array performance through the optimisation of layout and yaw angles

    Get PDF
    Tidal stream currents change in magnitude and direction during flood and ebb tides. Setting the most appropriate yaw angles for a tidal turbine is not only important to account for the performance of a single turbine, but can also be significant for the interactions between the turbines within an array. In this paper, a partial differentiation equation (PDE) constrained optimisation approach is established based on the Thetis coastal ocean modelling framework. The PDE constraint takes the form here of the two-dimensional, depth-averaged shallow water equations which are used to simulate tidal elevations and currents in the presence of tidal stream turbine arrays. The Sequential Least Squares Programming (SLSQP) algorithm is applied with a gradient obtained via the adjoint method in order to perform array design optimisation. An idealised rectangular channel test case is studied to demonstrate this optimisation framework. Located in the centre of the computational domain, arrays comprised of 12 turbines are tested in aligned and staggered layouts. The setups are initially optimised based on their yaw angles alone. In turn, turbine coordinates and yaw angles are also optimized simultaneously. Results indicate that for an aligned turbine array case under steady state conditions, the energy output can be increased by approximately 80\% when considering yaw angle optimisation alone. For the staggered turbine array, the increase is approximately 30\%. The yaw optimised staggered array is able to outperform the yaw optimised aligned array by approximately 8\%. If both layout and the yaw angles of the turbines are considered within the optimisation then the increase is more significant compared with optimising yaw angle alone

    A ROP GTPase-Dependent Auxin Signaling Pathway Regulates the Subcellular Distribution of PIN2 in Arabidopsis Roots

    Get PDF
    SummaryPIN-FORMED (PIN) protein-mediated auxin polar transport is critically important for development, pattern formation, and morphogenesis in plants. Auxin has been implicated in the regulation of polar auxin transport by inhibiting PIN endocytosis [1, 2], but how auxin regulates this process is poorly understood. Our genetic screen identified the Arabidopsis SPIKE1 (SPK1) gene whose loss-of-function mutations increased lateral root density and retarded gravitropic responses, as do pin2 knockout mutations [3]. SPK1 belongs to the conserved DHR2-Dock family of Rho guanine nucleotide exchange factors [4–6]. The spk1 mutations induced PIN2 internalization that was not suppressed by auxin, as did the loss-of-function mutations for Rho-like GTPase from Plants 6 (ROP6)-GTPase or its effector RIC1. Furthermore, SPK1 was required for auxin induction of ROP6 activation. Our results have established a Rho GTPase-based auxin signaling pathway that maintains PIN2 polar distribution to the plasma membrane via inhibition of its internalization in Arabidopsis roots. Our findings provide new insights into signaling mechanisms that underlie the regulation of the dynamic trafficking of PINs required for long-distance auxin transport and that link auxin signaling to PIN-mediated pattern formation and morphogenesis

    Nitidine Chloride Alleviates Inflammation and Cellular Senescence in Murine Osteoarthritis Through Scavenging ROS

    Get PDF
    Osteoarthritis (OA) is one of the most common chronic musculoskeletal disorder worldwide, representing a major source of disability, pain and socioeconomic burden. Yet the effective pharmaceutical treatments applied in the clinical works are merely symptomatic management with uncertainty around their long-term safety and efficacy, namely no drugs currently are capable of modulating the biological progression of OA. Here, we identified the potent anti-inflammatory as well as anti-oxidative properties of Nitidine Chloride (NitC), a bioactive phytochemical alkaloid extracted from natural herbs, in IL-1β-treated rat articular chondrocytes (RACs), LPS-stimulated RAW 264.7 and rat osteoarthritic models in vivo. We demonstrated NitC remarkably inhibited the production of inflammatory mediators including COX2 and iNOS, suppressed the activation of MAPK and NF-κB cell signaling pathway and reduced the expression of extracellular matrix (ECM) degrading enzymes including MMP3, MMP9 and MMP13 in IL-1β-treated RACs. Several emerging bioinformatics tools were performed to predict the underlying mechanism, the result of which indicated the potential reactive oxygen species (ROS) clearance potential of NitC. Further, NitC exhibited its anti-oxidative potential through ameliorating cellular senescence in IL-1β-treated RACs and decreasing NLRP3 inflammasomes activation in LPS-stimulated RAW 264.7 via scavenging ROS. Additionally, X-ray, micro-CT and other experiments in vivo demonstrated that intra-articular injection of NitC significantly alleviated the cartilage erosion, ECM degradation and subchondral alterations in OA progression. In conclusion, the present study reported the potent anti-inflammatory and anti-oxidative potential of NitC in OA biological process, providing a promising therapeutic agent for OA management

    Bioinformatics analysis of CUL2/4A/9 and its function in head and neck squamous cell carcinoma

    Get PDF
    Introduction: Several previous studies have shown that differential expression of cullin (CUL) family proteins may be involved in mediation of the signal transduction pathways associated with cancer. However, the function of CULs is still unclear in head and neck squamous cell carcinoma (HNSCC). Material and methods: We used The Cancer Genome Atlas (TCGA) database, cBioPortal, Metascape, STRING, Cytoscape, Tumor Immune Estimation Resource (TIMER), Kaplan-Meier plotter, and Tumor Immune System Interaction Database (TISIDB) to access the expression of CULs and the possible correlation with the tumourigenesis, development, prognosis, immunity, and transcriptional level of CULs in HNSCC. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect messenger ribonucleid acid (mRNA) levels in HNSCC tissues and cell samples. We also explored the cell proliferation and migration separately by CCK8 assay and wound healing assay. Results: The results showed that the expressions of CUL2/4A were upregulated and CUL9 was downregulated in HNSCC patients as compared with normal patients. CUL2/4A/9 were also linked to the clinicopathological features and overall survival of HNSCC in bioinformatics analysis. Moreover, we noticed that CUL2/4A/9 may take part in tumour-specific immune response by modulating the tumour-infiltrating lymphocytes (TILs) and immunomodulators. Lastly, we found that CUL2/4A/9 could promote cellular proliferation and migration. Conclusion: These results suggest that the transcriptional levels of CUL2/4A/9 were upregulated and these genes could affect proliferation and migration of HNSCC cells. Therefore, CUL2/4A/9 could potentially function as novel independent biomarkers in HNSCC patients

    Rural livelihoods and vulnerability to climate hazards in Ningxia, Northwest China

    Full text link
    This study addresses how climate affects the livelihoods of people living in agricultural communities in Ningxia, one of the five autonomous regions in China. The analysis formed part of a vulnerability assessment to contribute to the development of an adaptation strategy for the region. Data were collected through questionnaires and focus group discussions in nine villages, three located in each of three different agro-ecosystems in the region. The survey results showed that drought has been a major hazard impacting rural livelihoods. Farmers in all three agro-ecosystems showed differing levels of vulnerability; susceptibility was higher, for instance, in the middle arid and southern rainfed mountainous areas, due to farmers’ greater exposure to climatic hazards and because a greater proportion of income originates from farming activities. Recent climate variability had affected many aspects of farmers’ livelihoods but it was not the only challenge they had faced. The perennially dry climate is a significant limiting factor for agricultural production in the region, greatly exacerbated by periodic reductions in moisture due to drought. Unsurprisingly, farmers have developed and continue to use a wide range of measures to retain and enhance soil moisture and to maintain agricultural production in this harsh environment: adaptation is an inherent feature of their behaviour, but their capacity to act is determined by a range of factors. When questioned on the constraints they faced respondents cited most often lack of money, water shortage and agricultural inputs. Because of the close alignment at the community and household level between adaptation and more generic individual and institutional aims for development there exists good potential to incorporate adaptation objectives and measures into mainstream development plans and poverty alleviation programmes

    Osteogenesis Capability and Degradation Property Evaluation of Injectable Biomaterials: Comparison of Computed Tomography and Ultrasound

    Get PDF
    Injectable biomaterials, which can be physically inserted into a target site without the use of surgery, have received increasing attention in tissue engineering during the last decade. There is also a growing need for quantitative evaluation of the injectable biomaterial directly and noninvasively. The objectives of this study are to originate a quantitative noninvasive technique for evaluation of in situ forming bone biomaterials and to validate the feasibility of diagnostic ultrasound images analysis technique. The potential of ultrasound for quantitative evaluation of tissue development was compared with computed tomography (CT) in vivo. A strong correlation was witnessed between ultrasound gray-scale values (GV) and volumetric mean of CT value (HUm) (r=0.95). Meanwhile, the volume of the material area could be estimated by ultrasound maximum cross-section pixel, which demonstrates a certain consistency with CT mask volume in 3D reconstruction images (r=0.87). In conclusion, ultrasound imaging, which is corresponding with the traditional CT, can be used to evaluate osteogenesis capability and degradation property of injectable biomaterials. It may be a noninvasive, nonradioactive, and effective aid to monitor ossification and reconstruction of biomaterials at the implant region for bone defect repair
    • …
    corecore