38 research outputs found

    Novel classes of non-coding RNAs and cancer

    Full text link

    MiR-34b is associated with clinical outcome in triple-negative breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is the most common malignancy with the highest incidence rates among women worldwide. Triple-negative breast cancer (TNBC) represents the major phenotype of basal-like molecular subtype of breast cancer, characterized by higher incidence in young women and a very poor prognosis. MicroRNAs (miRNAs) are small non-coding RNAs playing significant role in the pathogenesis of many cancers including breast cancer. Therefore, miRNAs are also potential prognostic and/or predictive biomarkers in triple-negative breast cancer patients.</p> <p>Methods</p> <p>Thirty-nine TNBC patients with available formalin-fixed paraffin-embedded (FFPE) tissues were enrolled in the study. MiR-34a, miR-34b, and miR-34c were analyzed using qRT-PCR and correlated to clinico-pathological features of TNBC patients.</p> <p>Results</p> <p>Expression levels of miR-34b significantly correlate with disease free survival (DFS) (<it>p </it>= 0.0020, log-rank test) and overall survival (OS) (<it>p </it>= 0.0008, log-rank test) of TNBC patients. No other significant associations between miR-34a, miR-34b, and miR-34c with available clinical pathological data were observed.</p> <p>Conclusions</p> <p>MiR-34b expression negatively correlates with disease free survival and overall survival in TNBC patients. Thus, miR-34b may present a new promising prognostic biomarker in TNBC patients, but independent validations are necessary.</p

    Prevalence of Propionibacterium acnes in Intervertebral Discs of Patients Undergoing Lumbar Microdiscectomy: A Prospective Cross-Sectional Study

    Get PDF
    Background The relationship between intervertebral disc degeneration and chronic infection by Propionibacterium acnes is controversial with contradictory evidence available in the literature. Previous studies investigating these relationships were under-powered and fraught with methodical differences;moreover, they have not taken into consideration P. acnes' ability to form biofilms or attempted to quantitate the bioburden with regard to determining bacterial counts/genome equivalents as criteria to differentiate true infection from contamination. The aim of this prospective cross-sectional study was to determine the prevalence of P. acnes in patients undergoing lumbar disc microdiscectomy. Methods and Findings The sample consisted of 290 adult patients undergoing lumbar microdiscectomy for symptomatic lumbar disc herniation. An intraoperative biopsy and pre-operative clinical data were taken in all cases. One biopsy fragment was homogenized and used for quantitative anaerobic culture and a second was frozen and used for real-time PCR-based quantification of P. acnes genomes. P. acnes was identified in 115 cases (40%), coagulase-negative staphylococci in 31 cases (11%) and alpha-hemolytic streptococci in 8 cases (3%). P. acnes counts ranged from 100 to 9000 CFU/ml with a median of 400 CFU/ml. The prevalence of intervertebral discs with abundant P. acnes (>= 1x10(3) CFU/ml) was 11% (39 cases). There was significant correlation between the bacterial counts obtained by culture and the number of P. acnes genomes detected by real-time PCR (r = 0.4363, p<0.0001). Conclusions In a large series of patients, the prevalence of discs with abundant P. acnes was 11%. We believe, disc tissue homogenization releases P. acnes from the biofilm so that they can then potentially be cultured, reducing the rate of false-negative cultures. Further, quantification study revealing significant bioburden based on both culture and real-time PCR minimize the likelihood that observed findings are due to contamination and supports the hypothesis P. acnes acts as a pathogen in these cases of degenerative disc disease

    Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy

    Get PDF
    Background In previous studies, Propionibacterium acnes was cultured from intervertebral disc tissue of similar to 25% of patients undergoing microdiscectomy, suggesting a possible link between chronic bacterial infection and disc degeneration. However, given the prominence of P. acnes as a skin commensal, such analyses often struggled to exclude the alternate possibility that these organisms represent perioperative microbiologic contamination. This investigation seeks to validate P. acnes prevalence in resected disc cultures, while providing microscopic evidence of P. acnes biofilm in the intervertebral discs. Methods Specimens from 368 patients undergoing microdiscectomy for disc herniation were divided into several fragments, one being homogenized, subjected to quantitative anaerobic culture, and assessed for bacterial growth, and a second fragment frozen for additional analyses. Colonies were identified by MALDI-TOF mass spectrometry and P. acnes phylotyping was conducted by multiplex PCR. For a sub-set of specimens, bacteria localization within the disc was assessed by microscopy using confocal laser scanning and FISH. Results Bacteria were cultured from 162 discs (44%), including 119 cases (32.3%) with P. acnes. In 89 cases, P. acnes was cultured exclusively;in 30 cases, it was isolated in combination with other bacteria (primarily coagulase-negative Staphylococcus spp.) Among positive specimens, the median P. acnes bacterial burden was 350 CFU/g (12 - similar to 20,000 CFU/g). Thirtyeight P. acnes isolates were subjected to molecular sub-typing, identifying 4 of 6 defined phylogroups: IA1, IB, IC, and II. Eight culture-positive specimens were evaluated by fluorescence microscopy and revealed P. acnes in situ. Notably, these bacteria demonstrated a biofilm distribution within the disc matrix. P. acnes bacteria were more prevalent in males than females (39% vs. 23%, p = 0.0013). Conclusions This study confirms that P. acnes is prevalent in herniated disc tissue. Moreover, it provides the first visual evidence of P. acnes biofilms within such specimens, consistent with infection rather than microbiologic contamination

    Long Non-Coding RNAs in Gliomas: From Molecular Pathology to Diagnostic Biomarkers and Therapeutic Targets

    No full text
    Gliomas are the most common malignancies of the central nervous system. Because of tumor localization and the biological behavior of tumor cells, gliomas are characterized by very poor prognosis. Despite significant efforts that have gone into glioma research in recent years, the therapeutic efficacy of available treatment options is still limited, and only a few clinically usable diagnostic biomarkers are available. More and more studies suggest non-coding RNAs to be promising diagnostic biomarkers and therapeutic targets in many cancers, including gliomas. One of the largest groups of these molecules is long non-coding RNAs (lncRNAs). LncRNAs show promising potential because of their unique tissue expression patterns and regulatory functions in cancer cells. Understanding the role of lncRNAs in gliomas may lead to discovery of the novel molecular mechanisms behind glioma biological features. It may also enable development of new solutions to overcome the greatest obstacles in therapy of glioma patients. In this review, we summarize the current knowledge about lncRNAs and their involvement in the molecular pathology of gliomas. A conclusion follows that these RNAs show great potential to serve as powerful diagnostic, prognostic, and predictive biomarkers as well as therapeutic targets

    MicroRNAs Involvement in Radioresistance of Head and Neck Cancer

    No full text
    Resistance to the ionizing radiation is a current problem in the treatment and clinical management of various cancers including head and neck cancer. There are several biological and molecular mechanisms described to be responsible for resistance of the tumors to radiotherapy. Among them, the main mechanisms include alterations in intracellular pathways involved in DNA damage and repair, apoptosis, proliferation, and angiogenesis. It has been found that regulation of these complex processes is often controlled by microRNAs. MicroRNAs are short endogenous RNA molecules that posttranscriptionally modulate gene expression and their deregulated expression has been observed in many tumors including head and neck cancer. Specific expression patterns of microRNAs have also been shown to predict prognosis and therapeutic response in head and neck cancer. Therefore, microRNAs present promising biomarkers and therapeutic targets that might overcome resistance to radiation and improve prognosis of head and neck cancer patients. In this review, we summarize the current knowledge of the functional role of microRNAs in radioresistance of cancer with special focus on head and neck cancer

    The Significance of MicroRNAs in the Molecular Pathology of Brain Metastases

    No full text
    Brain metastases are the most frequent intracranial tumors in adults and the cause of death in almost one-fourth of cases. The incidence of brain metastases is steadily increasing. The main reason for this increase could be the introduction of new and more efficient therapeutic strategies that lead to longer survival but, at the same time, cause a higher risk of brain parenchyma infiltration. In addition, the advances in imaging methodology, which provide earlier identification of brain metastases, may also be a reason for the higher recorded number of patients with these tumors. Metastasis is a complex biological process that is still largely unexplored, influenced by many factors and involving many molecules. A deeper understanding of the process will allow the discovery of more effective diagnostic and therapeutic approaches that could improve the quality and length of patient survival. Recent studies have shown that microRNAs (miRNAs) are essential molecules that are involved in specific steps of the metastatic cascade. MiRNAs are endogenously expressed small non-coding RNAs that act as post-transcriptional regulators of gene expression and thus regulate most cellular processes. The dysregulation of these molecules has been implicated in many cancers, including brain metastases. Therefore, miRNAs represent promising diagnostic molecules and therapeutic targets in brain metastases. This review summarizes the current knowledge on the importance of miRNAs in brain metastasis, focusing on their involvement in the metastatic cascade and their potential clinical implications

    MicroRNA isolation and quantification in cerebrospinal fluid: A comparative methodical study.

    No full text
    Associated with the pathogenesis of many cancers, including brain tumors, microRNAs (miRNAs) present promising diagnostic biomarkers. These molecules have been also studied in cerebrospinal fluid (CSF), showing great potential as a diagnostic tool in patients with brain tumors. Even though there are some biological and technological factors that could affect the results and their biological and clinical interpretation, miRNA analysis in CSF is not fully standardized. This study aims to compare several RNA extraction and miRNA quantification approaches, including high-throughput technologies and individual miRNA detection methods, thereby contributing to the optimization and standardization of quantification of extracellular miRNAs in CSF. Such knowledge is essential for the potential use of miRNAs as diagnostic biomarkers in brain tumors
    corecore