4 research outputs found

    Magnetically modified TiO2 powders - microstructure and magnetic properties

    Get PDF
    AbstractThe anatase (TiO2) particles magnetically modified by iron oxides and prepared by an innovating technological procedure are studied from the viewpoint of microstructure and a complex analysis of magnetic behaviour at room and elevated temperatures. Scanning electron microscopy observations have yielded variable shapes of particles in the composite powder whereas the iron oxide particles of diameter bellow 1μm were detected on the surface of the TiO2. The dominant magnetite (Fe3O4) accompanied by a small amount of maghemite (γ-Fe2O3) and/or hematite (α- Fe2O3) were analysed by X-ray powder diffraction. A relatively high saturation magnetization (3.38 Am2/kg), negative dipolar interactions, and the low values of reversible and irreversible part of magnetic susceptibility were found out from magnetic measurements at room temperature. During a thermomagnetic treatment the composite sample has been going through a few magnetic phase transitions and transforms into a fully paramagnetic state around 850K. After its cooling to the room temperature an undesirable magnetic hardening of the sample has occurred

    >

    No full text

    Spectral interferometric technique to measure the ellipsometric phase of a thin-film structure

    Get PDF
    A two-step white-light spectral interferometric technique is used to retrieve the ellipsometric phase of a thin-film structure from the spectral interferograms recorded in a polarimetry configuration with a birefringent crystal. In the first step, the phase difference between p- and s-polarized waves propagating in the crystal alone is retrieved. In the second step, the additional phase change that the polarized waves undergo on reflection from the thin-film structure is retrieved. The new method is used in determining the thin-film thickness from ellipsometric phase measured for SiO2 thin film on a Si substrate in a range from 550to900 nm. The thicknesses of three different samples obtained are compared with those resulting from polarimetric measurements, and good agreement is confirmed

    Dynamics analysis of cavitation disintegration of microparticles during nanopowder preparation in a new Water Jet Mill (WJM) device

    No full text
    A physical analysis of cavitation-based implosive breakage of solid particles focusing on practical application during fine particle disintegration in a liquid suspension is submitted in the present paper. The physical source of the cavitation dynamics phenomena involved is an extreme velocity gradient induced by an ultrahigh-energy liquid jet mixing together with a slow liquid suspension of milled particles. Extreme tensile stresses occurring at velocity gradients over 1000 ms−1mm−1 at the operating temperature of 65 °C generates high-intensity pure vapor cavitation in the degassed water dispersion with extreme values of impact pressure in the final of bubble implosions on particle surfaces. Preparation of silicon nanoparticles with median diameter approximately 148 nm using a newly developed “Water Jet Mill” (WJM) device is demonstrated in the present article as an example of application of the aforementioned disintegration method as well as of theoretical analysis of this method. The disintegration method is characterized by a high potential for milling of submicron particles with high efficiency.Web of Science22564363
    corecore