28 research outputs found

    Influence of Fly Ash and Polyacrylamide Mixtures on Growth Properties of Artemisia ordosica in the Desert Region of North China

    No full text
    This study investigated the effects of consolidated soil layer (CSL) composed of fly ash (FA) and polyacrylamide (PAM) on the growth of Artemisia ordosica through plot experiments in Inner Mongolia, North China. It could provide a feasibility reference for ecological restoration and combating desertification in the desert areas. The germination and growth characteristics of Artemisia ordosica were studied in the control soil and 6 kinds of CSL, which were formed with 3 addition rates of FA (5%, 10%, and 15% (w/w) soil) and 2 addition rates of PAM (0.006% and 0.012% (w/w) soil). The results showed that CSL could provide good growth conditions for Artemisia ordosica in arid regions, especially for plant height, basal diameter, total fresh weight, and total dry weight in F5P1 as seen in 2017 and 2018. The FA, the PAM, and the interaction of FA and PAM all had significant impacts on the percentage of seedling emergence and total fresh weight (p < 0.05). The effects of CSL on the emergence and growth properties of Artemisia ordosica were evaluated by principal component analysis, and the CSL consisting of 5% FA and 0.006% PAM was recommended for plant growth

    Reasons for and consequences of enterprise information systems (EIS) adoption : corporate governance, business model co-evolution, and network evolution perspectives

    Full text link
    This thesis contributes to our understanding of the whole lifecycle of organizational innovation adoption by focusing on drivers of adoption and the consequences adoption has on the organization. By using EIS (Enterprise Information System) as an empirical example of an organizational innovation, I conduct three studies that correspond to three stages during innovation adoption: pre-adoption, implementation, and post-adoption. Utilizing existing research on corporate governance, microfoundations approach, evolutionary and co-evolutionary theories, organizational change, and social networks in different chapters of this thesis, specifically I study (1) How different board structures and compositions affect EIS adoption decision in organizations? (2) How EIS adoption causes changes in the organization’s business model and how such business model changes further shape EIS adoption decisions? and (3) How EIS adoption generates social network dynamics within the organization? I find that independent directors and strategy committee members perceive three different interpretations of information asymmetry due to the board context they are in and having more independent directors on the board or having a strategy committee on it increases the likelihood of adopting EIS top-level modules in order to reduce the perceived information asymmetry (Chapter 2). I further demonstrate the ongoing mutually reinforcing process of deciding which information technologies and systems to adopt and the organization’s internal environment (Chapter 4). Specifically, I elucidate a coevolutionary process between EIS adoption decisions and the organization’s business model. Finally, I show that EIS adoption generates changes in the content of social networks within the organization (Chapter 5). Specifically, I find that after EIS adoption, the proportion of conflict-related advice seeking is reduced, business-related advice seeking is increased, and the advisors’ engagement level in responding to advice requests is heightened.For Chapter 2, I develop a unique dataset of EIS investments by combining EIS vendor data with CSMAR data on Chinese public firms. I also conduct interviews for the microfoundations portion. For Chapters 4 and 5, I perform a longitudinal case study and use surveys, interviews, observations, and HR archives of the firms to collate and analyze rich contextual evidence

    Relationships between Soil Crust Development and Soil Properties in the Desert Region of North China

    No full text
    This study investigated the effects of soil crust development on the underlying soil properties. The field sampling work was conducted in June 2016 in the Hobq Desert in Inner Mongolia, North China. Soil crust samples and 0–6, 6–12, 12–18, 18–24, and 24–30 cm deep underlying soil samples were taken from five representative areas of different soil crust development stages. All samples were analyzed for physicochemical properties, including water content, bulk density, aggregate content, organic matter content, enzyme activities, and microbial biomass carbon and nitrogen. The results showed that the thickness, water content, macro-aggregate (>250 μm) content, organic matter content, microbial biomass, and enzyme activities of the soil crusts gradually increased along the soil crust development gradient, while the bulk density of the soil crusts decreased. Meanwhile, the physicochemical and biological properties of the soils below the algal and moss crusts were significantly ameliorated when compared with the physical crust. Moreover, the amelioration effects were significant in the upper horizons (approx. 0–12 cm deep) and diminished quickly in the deeper soil layers

    Bioaccumulation and human health implications of essential and toxic metals in freshwater products of Northeast China

    No full text
    Bioaccumulation and human health risks of essential and toxicmetals in ten species of freshwater products from Northeast China were investigated in this study. The concentrations (mg/kg wet weight) of target metals in aquatic products were: Fe (4.6-165.4), Zn (4.1-33.4), Mn (0.28-80.0), Cu (0.24-15.8), Cr (0.074-0.80), As (0.0068-0.72), Hg (0.016-0.58), Ni (0.019-0.58), Pb (0.017-0.27) and Cd (0.0004-0.058). There was no significant regional difference of target metal levels in fish samples between Liaoning province and Inner Mongolia Autonomous Region according tomatched sample t-test. Every daily intakes (EDI) of target metals from freshwater productswere far belowtheir corresponding limits. However, health risk assessment of individualmetal in freshwater products showed methyl mercury (MeHg) and Mn could pose potential noncarcinogenic risk to human, and inorganic arsenic (iAs) would cause potential carcinogenic risk to consumers at the level of 1 in 100,000. Furthermore, freshwater product species-specific bioaccumulation characteristics for different metals are quite different. The total hazard quotients of target metals in different aquatic product species demonstrated that coexposure of target metals by consumption of these six species (C. auratus, E. sinensis, C. erythropterus, C. carpio, M. anguillicaudatus and O. cantor) from Northeast China could cause potential noncarcinogenic risk to human, and the pollution of toxic metals in E. sinensis and C. auratus were most serious among all investigated aquatic species. (c) 2019 Elsevier B.V. All rights reserved

    Reactive Oxygen Species Play a Biphasic Role in Brain Ischemia

    No full text
    Objective: Reactive oxygen species (ROS) are the essential mechanism involving in the ischemic process. Due to their complex characteristics, the precise effects of ROS on post-ischemic neurons remain uncertain. This study aimed to investigate the potential role of ROS in brain ischemia. Methods: Dynamic ROS levels in the perifocal cortex were evaluated after right middle cerebral artery occlusion (MCAO) of SD rats. Furthermore the role of ROS was assessed following delayed treatment with the ROS scavenger dimethylthiourea (DMTU) after brain ischemia. Results: ROS levels markedly increased at 1 hr after reperfusion and then gradually decreased as the post-reperfusion time interval increased. ROS levels reached their lowest point at 3 days after reperfusion before increasing and showing a second peak at 7 days after reperfusion. ROS levels negatively correlated with neurological function scores. Delayed DMTU treatment after stroke worsened neurological outcomes, decreased microvessel density and inhibited stress-activated protein kinase activation. Conclusion: ROS may play a biphasic role in cerebral ischemia. Namely, ROS may induce damage during the injury phase of brain ischemia and participate in improving neurological function during the recovery phase

    Comprehensive Evaluation on Soil Properties and Artemisia ordosica Growth under Combined Application of Fly Ash and Polyacrylamide in North China

    No full text
    A field experiment was conducted to investigate the combined application effects of fly ash (FA) (0, 5%, 10%, and 15% (w/w) soil) and polyacrylamide (PAM) (0, 0.006% and 0.012% (w/w) soil) on the edge of Hobq Desert in Inner Mongolia, China from May 2016 to October 2018. Seven different ratios of FA and PAM were selected as evaluation objects, a total of 14 soil property indices and 9 Artemisia ordosica growth indices were selected as evaluation indicators, and the entropy weight method was employed to evaluate the soil physicochemical properties and vegetation growth performances under FA and PAM amendments. The results showed that the F15P1 (15% FA + 0.006% PAM) and F5P1 (5% FA + 0.006% PAM) were the effective treatments for soil improvement and Artemisia ordosica growth respectively. Considering the soil properties and Artemisia ordosica growth in 2016–2018 synthetically, the highest score was observed in the F5P1, followed by the F5P2 (5% FA + 0.012% PAM) and F10P1 (10% FA + 0.006% PAM) treatments. The optimal amounts for FA and PAM should be recommended as 5% and 0.006%, respectively

    Spotlights on ubiquitin-specific protease 12 (USP12) in diseases: from multifaceted roles to pathophysiological mechanisms

    No full text
    Abstract Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes. In this review, we initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune microenvironment (TME), disease, and related signaling pathways. This study also provides updated information on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington's disease. Generally, this review sums up the research advances of USP12 and discusses its potential clinical application value which deserves more exploration in the future

    Water Uptake Characteristics of <i>Stipa bungeana</i> Trin: Affected by Subsidence in the Coal Mining Areas of Northwest China

    No full text
    Revealing the water use pattern of plants influenced by coal-mining-caused land subsidence is crucial to understand plant–water interactions and guide ecological restoration. However, available information on herbaceous plants, the dominant species in most arid and semi-arid regions with abundant coal resources, remains inadequate. We investigated the water use patterns of Stipa bungeana Trin. by measuring soil water content, root distribution, and stable isotopes of hydrogen (δ2H) and oxygen (δ18O) of soil water and plant stem water both before and after a rainfall event. The results revealed that prior to rainfall, both areas exhibited a low soil water content with no discernible difference in soil drought. However, the soil waters δ2H and δ18O were found to be more enriched at varying depths within the subsidence area, indicating a heightened level of soil evaporation. Both soil water content and soil water isotopic composition responded sensitively to rainfall, with rainfall primarily replenishing the shallow layer (0–20 cm), thereby reflecting an infiltration mode dominated by piston flow. More water seeped into deeper soil layers in the subsidence area compared to the non-subsidence area, with more preferential flow. Before rainfall, the sources of plant water uptake were consistent both at shallow and deep soil layers, implying that the proportion of water uptake gradually decreased with increasing depth. After rainfall, the sources of plant water uptake differed slightly between the two soil layers. The plants in non-subsidence and subsidence areas dominantly extracted soil water at depths greater than 10 cm and 20 cm, respectively. The root system in the subsidence area was more developed than that in the non-subsidence area. Plant water uptake was primarily influenced by the spatial distribution of roots, as well as the post-rainfall water distribution, regardless of whether they were in the subsidence area or not. Although land subsidence affected soil water transport, the water uptake pattern of Stipa bungeana Trin. was similar before and after rainfall, indicating the adaptive growth of plants through their roots in the subsidence area. The high adaptability of herbs such as Stipa bungeana Trin. makes them a viable option for vegetation restoration in subsidence areas. This study has significant implications for evaluating plant–water relationships in subsidence areas due to coal mining, thereby providing a fundamental basis and valuable reference for ecological restoration and management strategies within such affected regions
    corecore