116 research outputs found

    A constraint on the formation timescale of the young open cluster NGC 2264: Lithium abundance of pre-main sequence stars

    Full text link
    The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered as a result of a real spread in age, the corresponding cluster formation timescale would be about 5 -- 20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars, can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500 < T_eff [K] <= 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A(Li) = 3.2 +/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3 -- 4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.Comment: 53 pages, 12 figures, 4 tables, Accepted for publication in the Astrophysical Journa

    Sejong Open Cluster Survey (SOS) - IV. The Young Open Clusters NGC 1624 and NGC 1931

    Full text link
    Young open clusters located in the outer Galaxy provide us with an opportunity to study star formation activity in a different environment from the solar neighborhood. We present a UBVI and H alpha photometric study of the young open clusters NGC 1624 and NGC 1931 that are situated toward the Galactic anticenter. Various photometric diagrams are used to select the members of the clusters and to determine the fundamental parameters. NGC 1624 and NGC 1931 are, on average, reddened by = 0.92 +/- 0.05 and 0.74 +/- 0.17 mag, respectively. The properties of the reddening toward NGC 1931 indicate an abnormal reddening law (Rv,cl = 5.2 +/- 0.3). Using the zero-age main sequence fitting method we confirm that NGC 1624 is 6.0 +/- 0.6 kpc away from the Sun, whereas NGC 1931 is at a distance of 2.3 +/- 0.2 kpc. The results from isochrone fitting in the Hertzsprung-Russell diagram indicate the ages of NGC 1624 and NGC 1931 to be less than 4 Myr and 1.5 - 2.0 Myr, respectively. We derived the initial mass function (IMF) of the clusters. The slope of the IMF (Gamma_NGC 1624 = -2.0 +/- 0.2 and Gamma_NGC 1931 = -2.0 +/- 0.1) appears to be steeper than that of the Salpeter/Kroupa IMF. We discuss the implication of the derived IMF based on simple Monte-Carlo simulations and conclude that the property of star formation in the clusters seems not to be far different from that in the solar neighborhood.Comment: 79 pages, 21 pages, 7 tables, Accepted for publication in the Astronomical Journa

    Sejong Open Cluster Survey (SOS). 0. Target Selection and Data Analysis

    Full text link
    Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We have initiated the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVIUBVI system. To achieve our main goal, we have paid much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small, sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - Mv relations, Sp - Teff relations, Sp - color relations, and Teff - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.Comment: 21 pages, 16 figures, accepted for publication in J. of Korean Astronomical Society (JKAS

    Star formation in W3 - AFGL333: Young stellar content, properties and roles of external feedback

    Full text link
    One of the key questions in the field of star formation is the role of stellar feedback on subsequent star formation process. The W3 giant molecular cloud complex at the western border of the W4 super bubble is thought to be influenced by the stellar winds of the massive stars in W4. AFGL333 is a ~10^4 Msun cloud within W3. This paper presents a study of the star formation activity within AFGL333 using deep JHKs photometry obtained from the NOAO Extremely Wide-Field Infrared Imager combined with Spitzer-IRAC-MIPS photometry. Based on the infrared excess, we identify 812 candidate young stellar objects in the complex, of which 99 are classified as Class I and 713 are classified as Class II sources. The stellar density analysis of young stellar objects reveals three major stellar aggregates within AFGL333, named here AFGL333-main, AFGL333-NW1 and AFGL333-NW2. The disk fraction within AFGL333 is estimated to be ~50-60%. We use the extinction map made from the H-Ks colors of the background stars to understand the cloud structure and to estimate the cloud mass. The CO-derived extinction map corroborates the cloud structure and mass estimates from NIR color method. From the stellar mass and cloud mass associated with AFGL333, we infer that the region is currently forming stars with an efficiency of ~4.5% and at a rate of ~2 - 3 Msun Myr-1pc-2. In general, the star formation activity within AFGL333 is comparable to that of nearby low mass star-forming regions. We do not find any strong evidence to suggest that the stellar feedback from the massive stars of nearby W4 super bubble has affected the global star formation properties of the AFGL333 region.Comment: 17 pages, 9 figures, Accepted for publication in Ap

    Sejong open cluster survey (SOS) - III. The young open cluster NGC 1893 in the H II region W8

    Get PDF
    We present a UBVI and Hα photometric study of the young open cluster NGC 1893 in the HII region W8 (IC 410 or Sh 2-236). A total of 65 early-type members are selected from photometric diagrams. A mean reddening of the stars is = 0.563 ± 0.08

    A constraint on the formation timescale of the young open cluster NGC 2264: Lithium abundance of pre-main sequence stars

    Get PDF
    The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is . From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr

    Auto-Guiding System for CQUEAN (Camera for QUasars in EArly uNiverse)

    Full text link
    To perform imaging observation of optically red objects such as high redshift quasars and brown dwarfs, the Center for the Exploration of the Origin of the Universe (CEOU) recently developed an optical CCD camera, Camera for QUasars in EArly uNiverse(CQUEAN), which is sensitive at 0.7-1.1 um. To enable observations with long exposures, we developed an auto-guiding system for CQUEAN. This system consists of an off-axis mirror, a baffle, a CCD camera, a motor and a differential decelerator. To increase the number of available guiding stars, we designed a rotating mechanism for the off-axis guiding camera. The guiding field can be scanned along the 10 acrmin ring offset from the optical axis of the telescope. Combined with the auto-guiding software of the McDonald Observatory, we confirmed that a stable image can be obtained with an exposure time as long as 1200 seconds.Comment: Accepted for publication in Journal of Korean Astronomical Society (JKAS
    corecore