72 research outputs found

    Associations of Subjective Sleep Quality and Daytime Sleepiness with Cognitive Impairment in Adults and Elders with Heart Failure

    Get PDF
    This study examined the association of subjective nighttime sleep quality and daytime sleepiness with cognitive impairment in 105 adults (\u3c 60 years old) and 167 elders (≥ 60 years old) with heart failure. Nighttime sleep quality and daytime sleepiness were measured by the Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale. Cognitive impairment was assessed using a neuropsychological battery measuring attention, memory, and processing speed. Multivariate logistic regression was used. In adults, daytime sleepiness was associated with cognitive impairment, whereas poor nighttime sleep quality was associated with cognitive impairment in elders. Age may play an important role in how sleep impacts cognition in persons with heart failure. Improving nighttime sleep quality and daytime sleepiness in this population may improve cognition

    Study of fashion brands’ Facebook fan pages using social network analysis

    Get PDF
    The purpose of this study is to explore the structures of social media network in H&M and Burberry brands’ Facebook Fan pages, to investigate how consumers participate in their Facebook Fan pages, and to examine how brands use Facebook fan pages to communicate with consumers using big data

    How to Get the Most from Microarray Data: Advice from Reverse Genomics

    Get PDF
    Whole-genome profiling of gene expression is a powerful tool for identifying cancer-associated genes. Genes differentially expressed between normal and tumorous tissues are usually considered to be cancer associated. We recently demonstrated that the analysis of interindividual variation in gene expression can be useful for identifying cancer associated genes. The goal of this study was to identify the best microarray data–derived predictor of known cancer associated genes. We found that the traditional approach of identifying cancer genes—identifying differentially expressed genes—is not very efficient. The analysis of interindividual variation of gene expression in tumor samples identifies cancer-associated genes more effectively. The results were consistent across 4 major types of cancer: breast, colorectal, lung, and prostate. We used recently reported cancer-associated genes (2011–2012) for validation and found that novel cancer-associated genes can be best identified by elevated variance of the gene expression in tumor samples

    Prediction of the Gene Expression in Normal Lung Tissue by the Gene Expression in Blood

    Get PDF
    Background: Comparative analysis of gene expression in human tissues is important for understanding the molecular mechanisms underlying tissue-specific control of gene expression. It can also open an avenue for using gene expression in blood (which is the most easily accessible human tissue) to predict gene expression in other (less accessible) tissues, which would facilitate the development of novel gene expression based models for assessing disease risk and progression. Until recently, direct comparative analysis across different tissues was not possible due to the scarcity of paired tissue samples from the same individuals. Methods: In this study we used paired whole blood/lung gene expression data from the Genotype-Tissue Expression (GTEx) project. We built a generalized linear regression model for each gene using gene expression in lung as the outcome and gene expression in blood, age and gender as predictors. Results: For ~18 % of the genes, gene expression in blood was a significant predictor of gene expression in lung. We found that the number of single nucleotide polymorphisms (SNPs) influencing expression of a given gene in either blood or lung, also known as the number of quantitative trait loci (eQTLs), was positively associated with efficacy of blood-based prediction of that gene’s expression in lung. This association was strongest for shared eQTLs: those influencing gene expression in both blood and lung. Conclusions: In conclusion, for a considerable number of human genes, their expression levels in lung can be predicted using observable gene expression in blood. An abundance of shared eQTLs may explain the strong blood/lung correlations in the gene expression

    FastPop: a rapid principal component derived method to infer intercontinental ancestry using genetic data.

    Get PDF
    BACKGROUND: Identifying subpopulations within a study and inferring intercontinental ancestry of the samples are important steps in genome wide association studies. Two software packages are widely used in analysis of substructure: Structure and Eigenstrat. Structure assigns each individual to a population by using a Bayesian method with multiple tuning parameters. It requires considerable computational time when dealing with thousands of samples and lacks the ability to create scores that could be used as covariates. Eigenstrat uses a principal component analysis method to model all sources of sampling variation. However, it does not readily provide information directly relevant to ancestral origin; the eigenvectors generated by Eigenstrat are sample specific and thus cannot be generalized to other individuals. RESULTS: We developed FastPop, an efficient R package that fills the gap between Structure and Eigenstrat. It can: 1, generate PCA scores that identify ancestral origins and can be used for multiple studies; 2, infer ancestry information for data arising from two or more intercontinental origins. We demonstrate the use of FastPop using 2318 SNP markers selected from the genome based on high variability among European, Asian and West African (African) populations. We conducted an analysis of 505 Hapmap samples with European, African or Asian ancestry along with 19661 additional samples of unknown ancestry. The results from FastPop are highly consistent with those obtained by Structure across the 19661 samples we studied. The correlations of the results between FastPop and Structure are 0.99, 0.97 and 0.99 for European, African and Asian ancestry scores, respectively. Compared with Structure, FastPop is more efficient as it finished ancestry inference for 19661 samples in 16 min compared with 21-24 h required by Structure. FastPop also provided scores based on SNP weights so the scores of reference population can be applied to other studies provided the same set of markers are used. We also present application of the method for studying four continental populations (European, Asian, African, and Native American). CONCLUSIONS: We developed an algorithm that can infer ancestries on data involving two or more intercontinental origins. It is efficient for analyzing large datasets. Additionally the PCA derived scores can be applied to multiple data sets to ensure the same ancestry analysis is applied to all studies

    Rare deleterious germline variants and risk of lung cancer

    Get PDF
    Recent studies suggest that rare variants exhibit stronger effect sizes and might play a crucial role in the etiology of lung cancers (LC). Whole exome plus targeted sequencing of germline DNA was performed on 1045 LC cases and 885 controls in the discovery set. To unveil the inherited causal variants, we focused on rare and predicted deleterious variants and small indels enriched in cases or controls. Promising candidates were further validated in a series of 26,803 LCs and 555,107 controls. During discovery, we identified 25 rare deleterious variants associated with LC susceptibility, including 13 reported in ClinVar. Of the five validated candidates, we discovered two pathogenic variants in known LC susceptibility loci, ATM p.V2716A (Odds Ratio [OR] 19.55, 95%CI 5.04–75.6) and MPZL2 p.I24M frameshift deletion (OR 3.88, 95%CI 1.71–8.8); and three in novel LC susceptibility genes, POMC c.*28delT at 3′ UTR (OR 4.33, 95%CI 2.03–9.24), STAU2 p.N364M frameshift deletion (OR 4.48, 95%CI 1.73–11.55), and MLNR p.Q334V frameshift deletion (OR 2.69, 95%CI 1.33–5.43). The potential cancer-promoting role of selected candidate genes and variants was further supported by endogenous DNA damage assays. Our analyses led to the identification of new rare deleterious variants with LC susceptibility. However, in-depth mechanistic studies are still needed to evaluate the pathogenic effects of these specific alleles

    A Recurrent Mutation in PARK2 Is Associated with Familial Lung Cancer

    Get PDF
    PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation

    Genetic Interaction Analysis Among Oncogenesis-Related Genes Revealed Novel Genes and Networks in Lung Cancer Development

    Get PDF
    The development of cancer is driven by the accumulation of many oncogenesis-related genetic alterationsand tumorigenesis is triggered by complex networks of involved genes rather than independent actions. To explore the epistasis existing among oncogenesis-related genes in lung cancer development, we conducted pairwise genetic interaction analyses among 35,031 SNPs from 2027 oncogenesis-related genes. The genotypes from three independent genome-wide association studies including a total of 24,037 lung cancer patients and 20,401 healthy controls with Caucasian ancestry were analyzed in the study. Using a two-stage study design including discovery and replication studies, and stringent Bonferroni correction for multiple statistical analysis, we identified significant genetic interactions between SNPs in RGL1:RAD51B (OR=0.44, p value=3.27x10-11 in overall lung cancer and OR=0.41, p value=9.71x10-11 in non-small cell lung cancer), SYNE1:RNF43 (OR=0.73, p value=1.01x10-12 in adenocarcinoma) and FHIT:TSPAN8 (OR=1.82, p value=7.62x10-11 in squamous cell carcinoma) in our analysis. None of these genes have been identified from previous main effect association studies in lung cancer. Further eQTL gene expression analysis in lung tissues provided information supporting the functional role of the identified epistasis in lung tumorigenesis. Gene set enrichment analysis revealed potential pathways and gene networks underlying molecular mechanisms in overall lung cancer as well as histology subtypes development. Our results provide evidence that genetic interactions between oncogenesis-related genes play an important role in lung tumorigenesis and epistasis analysis, combined with functional annotation, provides a valuable tool for uncovering functional novel susceptibility genes that contribute to lung cancer development by interacting with other modifier genes
    corecore