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RESEARCH ARTICLE Open Access

How to get the most from microarray data:
advice from reverse genomics
Ivan P Gorlov1*, Ji-Yeon Yang2, Jinyoung Byun3, Christopher Logothetis1, Olga Y Gorlova4, Kim-Anh Do5

and Christopher Amos3

Abstract

Background: Whole-genome profiling of gene expression is a powerful tool for identifying cancer-associated
genes. Genes differentially expressed between normal and tumorous tissues are usually considered to be cancer
associated. We recently demonstrated that the analysis of interindividual variation in gene expression can be useful
for identifying cancer associated genes. The goal of this study was to identify the best microarray data–derived
predictor of known cancer associated genes.

Results: We found that the traditional approach of identifying cancer genes—identifying differentially expressed
genes—is not very efficient. The analysis of interindividual variation of gene expression in tumor samples identifies
cancer-associated genes more effectively. The results were consistent across 4 major types of cancer: breast,
colorectal, lung, and prostate. We used recently reported cancer-associated genes (2011–2012) for validation and
found that novel cancer-associated genes can be best identified by elevated variance of the gene expression in
tumor samples.

Conclusions: The observation that the high interindividual variation of gene expression in tumor tissues is the best
predictor of cancer-associated genes is likely a result of tumor heterogeneity on gene level. Computer simulation
demonstrates that in the case of heterogeneity, an assessment of variance in tumors provides a better identification
of cancer genes than does the comparison of the expression in normal and tumor tissues. Our results thus
challenge the current paradigm that comparing the mean expression between normal and tumorous tissues is the
best approach to identifying cancer-associated genes; we found that the high interindividual variation in expression
is a better approach, and that using variation would improve our chances of identifying cancer-associated genes.

Keywords: Gene expression, Cancer genes, Interindividual variation in gene expression

Background
Global profiling of gene expression by microarray tech-
nology is widely used to study molecular mechanisms of
cancer. Even though a number of more sophisticated
methods have been developed [1,2] a typical approach to
analyze gene expression data is to compare the expres-
sion level between normal and primary tumor tissues
[3-6]; the genes showing the largest differences in ex-
pression are usually considered to be the top candidates
as cancer genes.

Recently we hypothesized that high inter-tumor vari-
ation in gene expression may more effectively identify
cancer-associated genes [7]. Tumors are heterogeneous
at the molecular level: in different tumors, different sub-
sets of cancer genes are drivers and therefore are upregu-
lated or downregulated. This leads to a higher inter-tumor
variation of the drivers and only slight differences in
mean expression values between normal and tumorous
tissues. The goal of this study was to comprehensively
evaluate that hypothesis.
A previous census of cancer-associated genes identified

400 human cancer genes [8]. The real number of cancer-
associated genes is likely to be higher because the cited
studies used presence of recurrent somatic mutations in
tumor tissue as the only criteria to define cancer-associated
genes. We can use known cancer-associated genes to
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identify which microarray data–derived variables are
the best predictors of known cancer genes. We call this a
“reverse genomics approach”, and we used it to identify
the best predictors of cancer genes for the 4 most com-
mon cancers: breast, colorectal, lung, and prostate.

Methods
Datasets and data processing
Figure 1 outlines the design of the study. Table 1 de-
scribes the datasets we used. We applied 2 criteria for
selecting the datasets: the sample size should be large
enough to allow reliable estimates of interindividual vari-
ance, and the gene expression data for both tumor and
adjacent normal tissues should be available. We used only
those probes that could be linked to a single gene. Because
different datasets used different gene identifiers, we con-
verted them to Entrez gene identification numbers by using
bioDBnet [9]. GeWorkbench 2.3.0 was used to download
Simple Omnibus Format in Text files [10]; the data were
log2 transformed and normalized by variance-stabilizing al-
gorithm [11] using VCN package in R from bioconductor
http://bioconductor.org/.

Identification of known cancer genes
Our working hypothesis was that inter-individual vari-
ance for gene expression values are higher for the
genes associated with cancer development because in
different tumors different sets of genes are used to drive
cancer development. To test this hypothesis we needed
to identify genes known to be associated with a given
type of cancer. We used text mining tools to identify
cancer-associated genes. We evaluated 3 text mining
tools: (1) Pathway Studio, (2) Ingenuity Systems, and
(3) KnowledgeNet. Results were consistent across the
3 algorithms. Throughout this paper we use Pathway
Studio [19] because it uses the most updated data-
bases. The lists of known cancer-associated genes for the
4 cancers we analyzed can be found in Additional file 1.
We excluded genes recently reported to be associated
with cancer (defined as those reported from January
1, 2011, through July 25, 2012, the date we completed

our analysis) because we used recently reported cancer
genes for validation.

Recently reported cancer genes
Our approach to retrieving recently reported cancer genes
is exemplified by breast cancer genes. First we retrieved
articles on breast cancer published during the period we
defined as recent (from January 1, 2011, through July 25,
2012). In total, 23,550 papers were retrieved by using
PubMed. We then scanned the abstracts by using MedS-
can [20]. One hundred forty-six associations between
genes and breast cancer were identified. Seventy genes
were novel and not previously reported (Additional file 2);
13 of them were microRNAs.
The same approach was used to retrieve novel colorectal,

lung, and prostate cancer genes. The list of the recently
reported cancer genes and the corresponding publica-
tions is found in Additional file 2.

Microarray data–derived predictors of known
cancer-associated genes
We used 6 microarray data–derived predictors: (1) mean
gene expression in adjacent normal tissue (m(AN)); (2)
mean gene expression in tumor tissue, (m(T)); (3) the
degree of change (fold change, or FC) in expression level
between tumorous and normal tissue; (4) –LOG(P), in
which P is the type-I error identified by using Student’s t
test to compare the mean expression between adjacent
normal and tumor tissues; (5) the standard deviation of
the gene expression in adjacent normal tissue (SD(AN));
and (6) the standard deviation of the gene expression in
tumor tissue (SD(T)). Nonparametric Mann-Whitney U
(MW) test was used to compare those 6 predictors be-
tween cancer-associated genes and all other genes in the
human genome.
To estimate how efficiently microarray data–derived pre-

dictors predict cancer genes, we ranked the probes by
the predictors’ values and estimated the percentage of
the cancer-associated genes among the top 5% of the
probes. An enrichment factor (EF) was used as a measure
of identification efficacy: EF = P/0.05, in which P is the

Figure 1 An outline of the study design.
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proportion of known cancer genes among the top 5%
genes ranked by a given predictor. When EF equals 1, the
predictors provide no advantage over random selection of
cancer-associated genes; the higher the EF, the better the
identification efficacy.

Analysis of outliers
We then identified gene expression outliers in tumor sam-
ples separately for cancer and noncancer genes. Outliers
for a given gene were defined as tumors with expression

level <̂ m Nð Þ−4 � SD Nð Þ or >̂m Nð Þ þ 4 � SD Nð Þ, in which

m̂ Nð Þ is the mean expression and SD(N) is the standard
deviation of the gene expression in adjacent normal tissue.
Known cancer genes are more likely to be differently
expressed and therefore are more likely to be outliers. To
account for the effect of differential gene expression
on its probability to be an outlier we first i) sorted all
genes according to –LOG(P) from largest to smallest,
and for each known cancer gene, and then ii) took non-
cancer genes from the list immediately above and below
of a given known cancer genes. Those neighbouring non-
cancer genes were used as a comparison group.

Computer simulation
We used computer simulation to compare the efficacy
of identification of cancer genes by SD(T) and –LOG(P).
We simulated the expression levels of 1,000 genes: 50
cancer genes and 950 noncancer genes. The total sample
size was 40 tissues: 20 adjacent normal tissues and 20
tumor tissues. Expression values were sampled from
the normal distribution with mean = 7 and SD = 0.6
{N(7.0,0.6)}, which are typical means and SDs for the
datasets we used.
Two models were compared: the “shifting means model”

and the “outlier’s model” (Figure 2). In the shifting means
model, tumors are homogeneous: differences in mean ex-
pression levels between normal and tumor tissues are due
to the shift of the distribution to the right (upregulation)
or the left (downregulation). In the outlier’s scenario, a

cancer gene is differently expressed in only a fraction of
tumors. In different tumors, different cancer genes can be
outliers.
In the shifting means model, expression values were

sampled from the normal distribution: N(7.0 + s, 0.6), in
which s is the difference in mean expression values be-
tween tumor and adjacent normal tissues. Those mean
and variance are typical for the studies we have used.
Three different values of s (0.07, 0.35, and 0.7) were con-
sidered. The number of simulated outliers was defined
to make the mean expression value in tumors similar to
that of the shifting means model.

Binary logistic regression model
To explore whether the combination of several predic-
tors can provide better identification of known cancer
genes than any single predictor can, we ran a binary
logistic regression model. A stepwise-forward likelihood
ratio model was used to identify significant predictors
in each dataset. This analysis was done for each cancer
type separately. Known cancer genes were considered
as outcome and –LOG(P), m(AN), m(T), FC, SD(AN),
and SD(T) as predictors.

Raw and processed data
To estimate the effect of the data processing on the vari-
ance estimates, we computed variance in adjacent nor-
mal and tumor samples of (1) raw gene expression data,
(2) log(2)-transformed data, and (3) data normalized by
using a variance-stabilizing approach. We compared
variance through these 3 levels using Kendall’s rank-
correlation and estimated the efficacy of the variance-
based identification of cancer genes for each level.

Results
SD(T) shows the strongest association with known cancer
genes
The lists of the known breast, colorectal, lung, and pros-
tate cancer genes are shown in Additional file 2. To check
how known cancer genes differ from other genes, we used

Table 1 Brief description of the datasets used

Cancer Reference
no. GSE_ID Platform No. of

probes*
Sample size

AN T

Breast [12] GSE10780 Affymetrix HG-U133_Plus_2 35764 142 42

Breast [13] GDS3716 Affymetrix HuEx-1_0-st 21169 24 18

Colorectal [14] GSE31737 Affymetrix HG-U133_Plus_2 17528 40 40

Lung [15] GSE19188 Affymetrix HG-U133_Plus_2 38597 65 91

Lung [16] GSE18842 Affymetrix HG-U133A 38578 45 45

Prostate [17] GSE21034 Affymetrix HuEx-1_0-st 27090 29 29

Prostate [18] GSE6919 Affymetrix HG_U95Av2 27964 63 63

*Only probes linked to a single gene were used in the analysis.
AN, adjacent normal tissue; T, tumor tissue.
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nonparametric MW testing; Table 2 shows the results of
the comparison. SD(T) consistently revealed the strongest
differences between cancer and noncancer genes: in 6 of 7
datasets, SD(T) had the largest MW statistics.
We also ranked the probes according to the predicting

variables and estimated percentage of the known cancer
genes among the top 5% of the probes. Under the null
hypothesis, one can expect 5% of the known cancer
genes to be among the top 5% of the ranked probes. We
found that all predictors identified more known cancer
genes than what one could expect by chance. Figure 3
shows the results of that analysis.

Outliers
In all datasets, the percentage of outliers for cancer
genes was higher than it was for the comparison group
(Table 3). In 3 datasets, the differences were significant. In
the overall analysis (nonparametric MW test), the percent-
age of outliers was overall higher for cancer genes than it
was for the paired controls: 3.3 ± 0.2 vs. 2.6 ± 0.1; MW test
Z = 3.5; P = 0.0004.

Recently reported cancer-associated genes
We next compared the newly reported cancer genes
(i.e., reported from January 1, 2011, through July 25, 2012)
with all other genes in the human genome (Table 4).

SD(T) was the most significant variable for recently identi-
fied cancer genes.

Computer simulation
Figure 4 illustrates the results of the computer simula-
tion. We found that for the shifting means model, –
LOG(P) performed better than SD(T) did; however, for
the outliers model, the identification efficacy was better
for SD(T).

Binary logistic regression model
The results of applying the binary logistic regression
model to individual datasets are shown in Table 5. We
found that SD(T) was the most significant predictor of
known cancer genes in all models; in 3 of the 7 models,
SD(T) was the single significant predictor. For the other
predictors, the results were inconsistent across studies.

Raw and processed data
We found a strong correlation between variances of log
(2)-transformed and normalized data: Kendall’s rank-
correlation coefficient varied from 0.94 to 0.98. The pre-
diction efficacy was essentially the same for the 2 types
of data. For the raw data, SD(T) was the most significant
predictor of known PCa genes. The average EF was
slightly lower for the raw data than was it was for the

Figure 2 The “shifting means model” (upper panel) and the “outliers model” (lower panel) of gene expression in tumors. In the shifting
means model, all tumors are similar in terms of gene expression. In the outlier’s model, the tumors are heterogeneous: a specific cancer gene is
extremely upregulated or downregulated only in a small fraction of tumors in which this gene is a driver of tumorigenesis.
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processed data: 3.5 ± 0.3 vs. 3.8 ± 0.2, even though the
correlation between the raw-data variance and the
processed-data variance was relatively low: average, 0.52;
range, 0.31 to 0.62.

Discussion
Our study showed that assessment of the interindivid-
ual variation of gene expression is better at predicting
cancer-associated genes than is the traditional com-
parison of mean gene expression in adjacent normal
and tumor tissues. The results were consistent for 4
major cancer types: breast, colorectal, lung, and prostate
cancer. Additionally, we checked bladder cancer data
(dataset GDS1479) [21] and found that SD(T) was also
the best predictor of known bladder cancer genes (data
not shown).
Why does interindividual variation in gene expression

provide a more effective approach to identifying cancer
genes than do differences in the mean expression? We
believe that tumor heterogeneity at the genetic level is
the most likely reason. Although technical errors can
contribute to interindividual heterogeneity of gene ex-
pression, their effect should not be specific to cancer
genes and usually it is much lower than that of gene ex-
pression heterogeneity resulting from biologic diffe-
rences in gene expression [22-24].
It is well recognized that different tumors are driven

by different sets of genes [25-28]. Variation among tu-
mors will lead to a substantial increase in interindividual
variation of cancer-associated genes and only slight dif-
ferences in means. The results of our computer simulation
support this explanation. When differences in expression
levels between normal and tumor tissues are driven by out-
liers, SD(T) provides a superior prediction of cancer genes
than –LOG(P) does. Consistent with these results, we
found that cancer genes have a higher probability of being
outliers than do other genes with comparable levels of
differential expression between tumorous and adjacent
normal tissue.

Table 2 Differences between cancer and all other genes
for 4 cancer gene predictors in 7 datasets

Dataset Trait Mean CG Mean OG Z P value Rank

BC_GSE10780

-LOG(P) 6.09 5.84 2.89 0.003852 6

m(AN) 6.32 6.16 3.68 0.000233 4

m(T) 6.51 6.18 3.3 0.000967 5

FC 1.33 1.19 4.65 3.32E-06 3

sd(AN) 0.42 0.33 5.61 2.02E-08 1

sd(T) 0.62 0.45 5.37 7.87E-08 2

BC_GSE3716

-LOG(P) 0.62 0.64 1.04 0.29834 3

m(AN) 7.34 7.42 0.37 0.711382 6

m(T) 7.41 7.51 0.75 0.453255 4

FC 1.21 1.21 0.58 0.561915 5

sd(AN) 0.84 0.79 2.79 0.005271 2

sd(T) 0.89 0.81 3.55 0.000385 1

CC_GSE31737

-LOG(P) 3.51 2.53 4.64 3.48E-06 6

m(AN) 5.74 4.77 5.54 3.02E-08 5

m(T) 5.89 4.77 6.19 6.02E-10 4

FC 1.40 1.19 6.58 4.7E-11 2

sd(AN) 0.38 0.22 6.52 7.03E-11 3

sd(T) 0.56 0.24 7.53 5.07E-14 1

LC_GSE19188

-LOG(P) 6.55 5.37 1.15 0.250144 6

m(AN) 6.49 6.06 4.74 2.14E-06 4

m(T) 6.61 6.12 4,47 7.82E-06 5

FC 1.58 1.29 5.62 1.91E-08 3

sd(AN) 0.34 0.17 7.86 3.84E-15 2

sd(T) 0.93 0.56 10.77 4.77E-27 1

LC_GSE18842

-LOG(P) 5.98 4.31 3.08 0.00207 6

m(AN) 6.24 5.75 6.26 3.85E-10 4

m(T) 6.47 5.75 6.56 5.38E-11 3

FC 1.66 1.31 6.1 1.06E-09 5

sd(AN) 0.43 0.33 8.21 2.21E-16 2

sd(T) 0.75 0.47 8.72 2.78E-18 1

PC_GSE6919

-LOG(P) 2.28 1.75 3.62 0.000295 4

m(AN) 7.41 7.01 1.87 0.061484 5

m(T) 7.42 6.99 1.86 0.062886 6

FC 1.32 1.21 4,57 4.88E-06 2

sd(AN) 0.61 0.59 3.87 0.000109 3

sd(T) 0.74 0.64 4.71 2.48E-06 1

Table 2 Differences between cancer and all other genes
for 4 cancer gene predictors in 7 datasets (Continued)

PC_GSE21034

-LOG(P) 2.55 1.68 3.97 7.19E-05 6

m(AN) 8.65 7.86 6.82 9.1E-12 4

m(T) 8.59 7.82 5.87 4.36E-09 5

FC 1.21 1.12 6.78 1.2E-11 3

sd(AN) 0.31 0.27 6.3 2.98E-10 3

sd(T) 0.37 0.28 6.83 8.49E-12 1

CG, cancer genes; OG, other genes. Statistics from nonparametric Mann-
Whitney test; rank, rank of the variable for a given dataset based on Z score;
m(AN), mean expression in adjacent normal tissue: m(T), mean expression in
tumor tissue; FC, fold change; SD(AN), standard deviation of the gene expres-
sion values in adjacent normal tissue; SD(T), standard deviation of the gene ex-
pression values in tumor tissue.
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SD-based prediction of cancer genes seems to be ro-
bust for data processing. Regardless of whether raw or
processed data were used for predicting cancer genes,
the average enrichment factor was highest for SD(T).
This is likely related to the fact that in extreme cases
(i.e., very low or very high variance), it does not really
matter whether we are using raw or processed data be-
cause the most variable genes tend to keep the same rank-
ing across the different levels of data processing.
The binary logistic regression model identified SD(T)

as the most significant and often the only predictor of
known cancer genes, whereas the results for the other
predictors we tested were inconsistent. Thus, our pre-
liminary analysis does not support the idea that combin-
ing several predictors could be better than the cancer
genes identification based on SD(T) only.
We noted that interindividual variation in the expres-

sion levels of cancer genes was higher not only for
tumor samples but also for adjacent normal tissues. This
may be a result of selection: adjacent normal tissue is
not the same as normal tissue from healthy individuals.
People differ by expression levels of cancer genes in nor-
mal target tissue, and those differences can contribute to
the risk of developing cancer. Somatic alterations, such
as methylation or loss or gain of chromosomal regions,
may further modulate the expression of cancer genes
[29-34], which may explain the better prediction of can-
cer genes by SD(T) than by SD(AN). The best way to
validate this selection hypothesis would be to compare
the gene expression in normal tissue (i.e., free of any
pathologic changes) with that in adjacent normal tissues
from cancer patients. Unfortunately, data on gene ex-
pression in normal tissues are usually not available. The
only available dataset we found was GSE6919. For that
dataset, we found that in normal prostate tissue from

healthy individuals, the mean SD for cancer genes was
0.63 ± 0.03, and the mean SD for all other genes was
0.61 ± 0.01. That difference was not statistically signifi-
cant (MW test, Z = 1.01, P = 0.31). However, in “normal”
tissue adjacent to tumor, the genes associated with
prostate cancer showed larger interindividual variation in
expression than all other genes have: MW test, Z = 4.57,
P = 0.000005. This suggests that “normal” tissue from
cancer patients is different from normal prostate tissue
from healthy individuals. It also suggests that the popula-
tion of prostate cancer patients is heterogeneous in terms
of the expression of prostate cancer genes: different sets of

Figure 3 The enrichment factor (EF) for known cancer genes among the top 5% of the probes ranked on the basis of the predicting
variables. The horizontal lines show the expected proportion of cancer genes under the null hypothesis. Left panel shows individual studies,
right panel shows averages across the studies.

Table 3 Percentage of outliers in tumor samples

Dataset Probe Type
% of Outliers

Z P
Mean N SE

GSE3716_BC Paired controls 7.01 439 0.38

Cancer genes 7.65 226 0.54 1.08 0.22

GSE10780_BC Paired controls 4.36 457 0.38

Cancer genes 4.59 469 0.41 0.84 0.61

GSE31737_CC Paired controls 1.26 202 0.18

Cancer genes 2.78 101 0.59 2.28 0.005

GSE18842_LC Paired controls 9.47 506 0.84

Cancer genes 12.68 256 1.40 2.26 0.01

GSE19188_LC Paired controls 6.97 506 0.55

Cancer genes 10.89 254 0.98 2.12 0.03

GSE6919_PC Paired controls 0.81 457 0.08

Cancer genes 0.98 230 0.11 0.56 0.74

GSE21034_PC Paired controls 1.72 343 0.34

Cancer genes 2.51 182 0.52 1.03 0.11

Data in bold face are statistically significant between paired controls and
cancer genes.
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Table 4 Differences between recently reported cancer genes and all other genes in the human genome

Dataset Trait Mean RRCGs Mean OGs Z P value Rank

BC_GSE10780

-LOG(P) 5.81 4.36 2.33 0.019828 6

m(AN) 6.65 6.16 3.09 0.002 5

m(T) 6.77 6.18 3.61 0.0003 3

FC 0.37 0.25 3.43081 0.000602 4

sd(AN) 0.31 0.41 3.88355 0.000103 2

sd(T) 0.62 0.45 4.52874 0.000006 1

BC_GSE3716

-LOG(P) 0.53 0.64 1.27891 0.200931 2

m(AN) 7.74 7.43 0.92 0.36 4

m(T) 7.79 7.50 0.79 0.43 5

FC 0.26 0.27 0.26448 0.791411 6

sd(AN) 0.82 0.79 1.2498 0.211373 3

sd(T) 0.89 0.80 2.71994 0.00653 1

CC_GSE31737

-LOG(P) 2.99 2.38 1.41345 0.157523 6

m(AN) 5.24 4.78 2.11 0.04 4

m(T) 5.24 4.78 2.06 0.04 5

FC 0.40 0.25 2.78341 0.005379 3

sd(AN) 0.52 0.40 3.52082 0.00043 2

sd(T) 0.57 0.43 4.12776 0.000037 1

LC_GSE19188

-LOG(P) 6.47 5.38 1.91017 0.056112 6

m(AN) 6.55 6.24 2.01 0.04 5

m(T) 6.71 6.57 2.11 0.04 4

FC 0.61 0.38 4.50134 0.000007 3

sd(AN) 0.52 0.35 5.09778 <10-6 2

sd(T) 0.84 0.56 7.51503 <10-6 1

LC_GSE18842

-LOG(P) 6.01 4.32 3.59092 0.00033 6

m(AN) 6.67 5.75 3.71 0.0002 5

m(T) 6.81 5.75 4.91 0.000001 4

FC 0.78 0.39 5.99594 <10-6 2

sd(AN) 0.51 0.33 5.1629 <10-6 3

sd(T) 0.82 0.47 8.26221 <10-6 1

PC_GSE6919

-LOG(P) 0.94 0.87 0.74248 0.457796 6

m(AN) 7.16 7.01 0.92 0.36 5

m(T) 7.18 6.99 1.04 0.3 4

FC 0.17 0.14 1.47057 0.141409 3

sd(AN) 0.63 0.59 1.84723 0.064715 2

sd(T) 0.69 0.64 2.15976 0.030792 1

PC_GSE21034

-LOG(P) 1.69 1.69 0.74953 0.453541 6

m(AN) 8.09 7.87 2.16 0.03 4

m(T) 8.15 7.83 2.25 0.02 3

FC 0.24 0.16 1.98956 0.04664 5

sd(AN) 0.32 0.27 2.66829 0.007624 2

sd(T) 0.34 0.29 2.99909 0.002708 1

RRCG, recently reported cancer genes; OG, other genes.
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prostate cancer genes are upregulated or downregulated
in different patients, leading to a greater interindividual
variation in expression.
If a higher interindividual variation in the expression

of cancer-associated genes results from genetic hetero-
geneity, so that different tumors use different sets of can-
cer genes, one can expect that genetically homogeneous
cancers would not show high interindividual variation in
expression. Clear cell renal cell carcinoma (CCRCC) is be-
lieved to be one of the least heterogeneous cancers [35]
with only two major subtypes (ccA and ccB) identified by
expression profiling [36]. For CCRCC we used GSE781
GEO dataset [37]. This dataset was selected because it
was generated using Affymetrix U133A platform which
makes the results comparable with the results on breast,
colorectal and lung cancers.
Interindividual variation in expression values of CCRCC-

associated genes was not different from interindividual
variation in expression values for all other genes, neither
in tumor: 0.24 ± 0.01 vs 0.23 ± 0.01; Mann-Whitney U
Test Z-adjusted = 0.7, P = 0.48, nor in adjacent normal
tissues: 0.23 ± 0.01 vs 0.22 ± 0.01; Mann-Whitney U
Test Z-adjusted = 0.3, P = 0.74. Therefore the results
of this analysis support the idea that a lower level of
interindividual variation in the expression of cancer-
associated genes is a result of tumor genetic homogeneity

in this particular cancer type. However, in this specific
analysis the lack of difference can be due to smaller sam-
ple size (9 tumor and 9 adjacent normal samples). This
sample size is much smaller compared to the sample sizes
used for other types of cancer (Table 1). To address this
issue we randomly sampled 9 tumors from each of the
datasets used for the analysis of the other types of cancer
(Table 1). Twenty random samplings were performed for
each datasets, 140 runs in total. For 134 of them or 96%,
SD for cancer-associated genes was significantly higher
compared to SD for all other genes. This suggests that a
smaller sample size is unlikely to explain the lack of differ-
ences in SD between cancer-associated and all other genes
in CCRCC sample. Therefore, the results of the analysis of
CCRCC support the idea that genetic heterogeneity con-
tributes to the higher interindividual variation in the ex-
pression of cancer-associated genes, but a larger study is
needed to be definitive on this point.

Conclusion
In conclusion, we found that interindividual variation in
gene expression more effectively identifies known cancer
genes than does the difference in mean expression levels
between adjacent normal and tumor tissues. The vari-
ation in gene expression levels was more effective at
identifying know cancer genes than were differences in
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Figure 4 The proportions of correctly predicted cancer genes for the shifting means (left panel) and outliers (right panel) models.
The prediction based on – LOG(P) is shown in blue, and that based on SD(T) is shown in red.

Table 5 Results of applying the binary logistic regression model to the 7 datasets

Cancer Dataset
Variables in the model

–LOG(P) m(AN) M(T) FC SD(AN) SD(T)

Breast GDS3716 ns Ns Ns ns Ns 10.5(0.001)

Breast GSE10780 ns Ns Ns ns Ns 76.1(<10-6)

Colorectal GSE31737 5.2(0.02) Ns 19.6(<10-6)1.5 E-82 ns Ns 27.8(<10-6)

Lung GSE18842 ns Ns 13.1(<10-6)3.3 E-39 15.2(3.5 E-52) 6.5(0.01) 41.5(<10-6)

Lung GSE19188 ns Ns Ns ns Ns 220.1(<10-6)

Prostate GSE6919 7.9(0.005) 7.1(0.007) ns Ns 74.9(<10-6)

Prostate GSE21034 22.3(<10-6) 4.8(0.04) 18.9 8.1(0.004) 48.8(<10-6)

ns – the variable is not significant; numbers are Wald statistics for the variables in the model; significance is shown in parentheses.
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mean levels or p-values. Thus, if we use SD(T) instead of
the traditional –LOG(P), we would increase our chances
of identifying cancer-associated genes. Overall, our re-
sults suggest that it would be beneficial to analyze inter-
individual variation in gene expression.

Additional files

Additional file 1: Known cancer genes.

Additional file 2: Recently identified cancer genes.
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