159 research outputs found

    Research on Robustness of Tree-based P2P Streaming

    Get PDF
    AbstractResearch on P2P streaming media is a hot topic in the area of Internet technology. It has emerged as a promising technique. This new paradigm brings a number of unique advantages such as scalability, resilience and also effectiveness in coping with dynamics and heterogeneity. However, There are also many problems in P2P streaming media systems using traditional tree-based topology such as the bandwidth limits between parents and child nodes; node's joining or leaving has a great effect on robustness of tree-based topology. This paper will introduce a method of measuring the robustness of tree-based topology: using network measurement, we observe and record the bandwidth between all the nodes, analyses the correlation between all the sibling flows, measure the robustness of tree-based topology. And the result shows that in the Tree-based topology, the different links which have similar routing paths would share the bandwidth bottleneck, reduce the robustness of the Tree-based topology

    Construction Technology and Strategy of Natural Light Environment in Urban Underground Space

    Get PDF
    In underground space, daylighting plays an important role in increasing the spacious sense, improving the ventilation effect, and more importantly, reducing the negative visual and psychological effects brought by the underground space, such as enclosed monotony, unknown direction and isolation. In this paper, the technical means of utilizing natural light in underground space were elaborated from the two aspects of passive daylighting method and active daylighting method, aiming to bring natural light into the underground as much as possible so as to fully satisfy people's longing for nature for those who work and live in the underground space

    Efficient induction of CD25- iTreg by co-immunization requires strongly antigenic epitopes for T cells

    Get PDF
    Background: We previously showed that co-immunization with a protein antigen and a DNA vaccine coding for the same antigen induces CD40(low) IL-10(high) tolerogenic DCs, which in turn stimulates the expansion of antigenspecific CD4(+)CD25(-)Foxp3(+) regulatory T cells (CD25(-) iTreg). However, it was unclear how to choose the antigen sequence to maximize tolerogenic antigen presentation and, consequently, CD25(-) iTreg induction. Results: In the present study, we demonstrated the requirement of highly antigenic epitopes for CD25(-) iTreg induction. Firstly, we showed that the induction of CD25(-) iTreg by tolerogenic DC can be blocked by anti-MHC-II antibody. Next, both the number and the suppressive activity of CD25(-) iTreg correlated positively with the overt antigenicity of an epitope to activate T cells. Finally, in a mouse model of dermatitis, highly antigenic epitopes derived from a flea allergen not only induced more CD25(-) iTreg, but also more effectively prevented allergenic reaction to the allergen than did weakly antigenic epitopes. Conclusions: Our data thus indicate that efficient induction of CD25- iTreg requires highly antigenic peptide epitopes. This finding suggests that highly antigenic epitopes should be used for efficient induction of CD25- iTreg for clinical applications such as flea allergic dermatitis

    Activity-assisted barrier-crossing of self-propelled colloids over parallel microgrooves

    Full text link
    We report a systematic study of the dynamics of self-propelled particles (SPPs) over a one-dimensional periodic potential landscape, which is fabricated on a microgroove-patterned polydimethylsiloxane (PDMS) substrate. From the measured non-equilibrium probability density function of the SPPs, we find that the escape dynamics of the slow-rotating SPPs across the potential landscape can be described by an effective potential, once the self-propulsion force is included into the potential under the fixed angle approximation. This work demonstrates that the parallel microgrooves provide a versatile platform for a quantitative understanding of the interplay among the self-propulsion force, spatial confinement by the potential landscape, and thermal noise, as well as its effects on activity-assisted escape dynamics and transport of the SPPs

    Technical Report for Argoverse Challenges on Unified Sensor-based Detection, Tracking, and Forecasting

    Full text link
    This report presents our Le3DE2E solution for unified sensor-based detection, tracking, and forecasting in Argoverse Challenges at CVPR 2023 Workshop on Autonomous Driving (WAD). We propose a unified network that incorporates three tasks, including detection, tracking, and forecasting. This solution adopts a strong Bird's Eye View (BEV) encoder with spatial and temporal fusion and generates unified representations for multi-tasks. The solution was tested in the Argoverse 2 sensor dataset to evaluate the detection, tracking, and forecasting of 26 object categories. We achieved 1st place in Detection, Tracking, and Forecasting on the E2E Forecasting track in Argoverse Challenges at CVPR 2023 WAD

    Assessing bilateral ankle proprioceptive acuity in stroke survivors:An exploratory study

    Get PDF
    BACKGROUND: Bilateral proprioception deficits were reported in stroke survivors. However, whether bilateral proprioception deficits exist in the ankle joint after stroke was unclear. Ankle proprioception is a significant predictor of balance dysfunction after stroke, and previous studies to date are lacking appropriate evaluation methods. OBJECTIVES: We want to determine whether the active movement extent discrimination apparatus (AMEDA) is a reliable tool for assessing ankle proprioceptive acuity in stroke survivors and the presence of deficits in ankle proprioception on the affected and unaffected sides in patients after stroke. METHODS: Bilateral ankle proprioception was assessed in 20 stroke patients and 20 age-matched healthy controls using AMEDA. Test-retest reliability was assessed using the intraclass correlation coefficient (ICC). RESULTS: The ICC in the affected and unaffected sides was 0.713 and 0.74, respectively. Analysis of variance revealed significant deficits in ankle proprioception in subacute stroke survivors vs. healthy controls (F = 2.719, p = 0.045). However, there were no significant differences in proprioception acuity scores between the affected and unaffected sides in patients after stroke (F = 1.14, p = 0.331). CONCLUSIONS: Stroke survivors had bilateral deficits in ankle proprioceptive acuity during active movements compared with age-matched healthy controls, underscoring the need to evaluate these deficits on both sides of the body and develop effective sensorimotor rehabilitation methods for this patient population. The AMEDA can reliably determine bilateral ankle proprioceptive acuity in stroke survivors

    A splicing isoform of TEAD4 attenuates the Hippo–YAP signalling to inhibit tumour proliferation

    Get PDF
    Aberrant splicing is frequently found in cancer, yet the biological consequences of such alterations are mostly undefined. Here we report that the Hippo–YAP signalling, a key pathway that regulates cell proliferation and organ size, is under control of a splicing switch. We show that TEAD4, the transcription factor that mediates Hippo–YAP signalling, undergoes alternative splicing facilitated by the tumour suppressor RBM4, producing a truncated isoform, TEAD4-S, which lacks an N-terminal DNA-binding domain, but maintains YAP interaction domain. TEAD4-S is located in both the nucleus and cytoplasm, acting as a dominant negative isoform to YAP activity. Consistently, TEAD4-S is reduced in cancer cells, and its re-expression suppresses cancer cell proliferation and migration, inhibiting tumour growth in xenograft mouse models. Furthermore, TEAD4-S is reduced in human cancers, and patients with elevated TEAD4-S levels have improved survival. Altogether, these data reveal a splicing switch that serves to fine tune the Hippo–YAP pathway

    Progress in Antarctic marine geophysical research by the Chinese Polar Program

    Get PDF
    Marine geophysical survey by the Chinese National Antarctic Research Expedition (CHINARE) began with the first science expedition in 1984/1985, although only four cruises were performed in the vicinity of the Antarctic Peninsula between then and 1991/1992. After a 20 year hiatus, Antarctic marine geophysical research was relaunched by the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs (known simply as the Chinese Polar Program) in 2011/2012. Integrated geophysical surveys have been carried out annually since, in Prydz Bay and the Ross Sea. During the last 5 years, we have acquired about 5500 km of bathymetric, gravimetric, and magnetic lines; more than 1800 km of seismic reflection lines; and data from several heat flow and Ocean Bottom Seismometer (OBS) stations. This work has deepened understandings of geophysical features and their implications for geological tectonics and glacial history in Antarctica and its surrounding seas. Compiled Antarctic Bouguer and Airy isostatic gravity anomalies show different features of tectonics between the East Antarctic stability and West Antarctic activity. Calculated magnetic anomalies, heat flow anomalies and lithospheric anisotropy offshore of Prydz Bay may imply high heat capacity of mantle shielded by the continental shelf lithosphere, but high heat dissipation of mantle due to the Cretaceous breakup of Gondwana along the continent and ocean transition (COT), where large sediment ridges would be brought about by the Oligocene ice sheet retreat and would enlarge free-air gravity anomalies. In the western Ross Sea, CHINARE seismic profiles indicate northern termination of the Terror Rift and deposition time of the grounding zone wedge in the northern JOIDES Basin
    corecore