20 research outputs found

    Up-Regulation of Th17 Cells May Underlie Inhibition of Treg Development Caused by Immunization with Activated Syngeneic T Cells

    Get PDF
    BACKGROUND: Our previous work showed that mice immunized with attenuated activated syngeneic T cells (aTCV) led to damping Treg function which resulted in enhancing anti-tumor immunity. It is well known that DC plays a very important role in controlling Th cell differentiation; whether DC involves Treg attenuation in immunized mice remained unknown. In this study, we provided evidence that increased mature DC (mDC) after immunization with aTCV skewed Th17 differentiation, which resulted in inhibition of Treg differentiation through IL-6 signaling pathway. PRINCIPAL FINDINGS: In the present study, we found that the frequency of mDCs increased dramatically in the immunized mice accompanied by lower Treg cells compared to the controls. Moreover, both DCs and serum derived from the immunized mice suppressed Treg differentiation in vitro, respectively. mDCs generated from bone marrow precursor cells in vitro strongly inhibited Treg development and simultaneously drove Th17 differentiation with elevated IL-6 production. However, PD-L1, a potent Treg inducer did not show effect on Treg down-regulation. Assay with transwell systems showed that cell-cell contact was necessary for IL-6 production to a threshold to activate Th17 transcriptional factor RORγt and to inhibit Treg counterpart Foxp3. CONCLUSIONS: Our results implicate up-regulated Th17 development might be one of mechanisms of enhancing anti-tumor immunity induced by immunization with aTCV, which provide a novel insight in numerous mechanisms responsible for anti-tumor immunity

    Identification and Development of Synovial B-Cell-Related Genes Diagnostic Signature for Rheumatoid Arthritis

    No full text
    Background. The aim of the study was to investigate the landscape of B-cell-related gene expression profiling in rheumatoid arthritis (RA) synovium and explore the biological and clinical significance of these genes in RA. Methods. Expression profiling of synovial biopsies from subjects with 152 RA patients, 22 osteoarthritis (OA) patients, and 28 healthy controls was downloaded from the Gene Expression Omnibus database. Single-sample gene set enrichment analysis (ssGSEA) was performed to evaluate the abundance of infiltrated immune cells, and the results were validated using immunohistochemical staining. GSEA was employed to decipher differences in B-cell-related biological pathways. B-cell-related differential expression genes (BRDEGs) were screened, and BRDEGs-based model was developed by machine learning algorithms and evaluated by an external validation set and clinical RA cohort, then biological functions were further analyzed. Results. High levels of immune cell infiltration and B-cell-related pathway activation were revealed in RA synovium. BRDEGs were screened, and three key molecular markers consisting of FAS, GPR183, and TFRC were identified. The diagnosis model was established, and these gene markers have good discriminative ability for RA. Molecular pathological evaluation confirmed RA patients with high-risk scores presented higher levels of B-cell activation and RA characteristics. In addition, a competitive endogenous RNA network was established to elucidate the molecular mechanisms of the posttranscriptional network. Conclusions. We described the B-cell-related molecular landscape of RA synovium and constructed a molecular diagnostic model in RA. The three genes FAS, GPR183, and TFRC may be potential targets for clinical diagnosis and immunoregulatory therapy of RA

    Datasets of YY1 expression in rheumatoid arthritis patients

    No full text
    The data presented in this article are related to the research article entitled “A critical role of transcription factor YY1 in rheumatoid arthritis by regulation of interleukin-6” (J. Lin, Y. He, J. Chen, Z. Zeng, B. Yang, Q. Ou, 2016) [1]. The article describes YY1 overexpression is specific for RA, but not for SLE, SS, DM or MCTD. In early RA, YY1 expression is also increased. In asymptomatic subjects with RF or ACPA positive who have high risk for developing RA, the YY1 expression is not increased obviously. Moreover, YY1 expression is positively correlated with serum CRP or ESR. In RA patients treated with anti-IL-6R monoclonal Ab tocilizumab, there is no significant difference in YY1 expression after IL-6 blocking therapy

    Establishment of Real Time Allele Specific Locked Nucleic Acid Quantitative PCR for Detection of HBV YIDD (ATT) Mutation and Evaluation of Its Application

    No full text
    <div><p>Background</p><p>Long-term use of nucleos(t)ide analogues can increase risk of HBV drug-resistance mutations. The rtM204I (ATT coding for isoleucine) is one of the most important resistance mutation sites. Establishing a simple, rapid, reliable and highly sensitive assay to detect the resistant mutants as early as possible is of great clinical significance.</p><p>Methods</p><p>Recombinant plasmids for HBV YMDD (tyrosine-methionine-aspartate-aspartate) and YIDD (tyrosine-isoleucine-aspartate-aspartate) were constructed by TA cloning. Real time allele specific locked nucleic acid quantitative PCR (RT-AS-LNA-qPCR) with SYBR Green I was established by LNA-modified primers and evaluated with standard recombinant plasmids, clinical templates (the clinical wild type and mutant HBV DNA mixture) and 102 serum samples from nucleos(t)ide analogues-experienced patients. The serum samples from a chronic hepatitis B (CHB) patient firstly received LMV mono therapy and then switched to LMV + ADV combined therapy were also dynamically analyzed for 10 times.</p><p>Results</p><p>The linear range of the assay was between 1×10<sup>9</sup> copies/μl and 1×10<sup>2</sup> copies/μl. The low detection limit was 1×10<sup>1</sup> copies/μl. Sensitivity of the assay were 10<sup>−6</sup>, 10<sup>−4</sup> and 10<sup>−2</sup> in the wild-type background of 1×10<sup>9</sup> copies/μl, 1×10<sup>7</sup> copies/μl and 1×10<sup>5</sup> copies/μl, respectively. The sensitivity of the assay in detection of clinical samples was 0.03%. The complete coincidence rate between RT-AS-LNA-qPCR and direct sequencing was 91.2% (93/102), partial coincidence rate was 8.8% (9/102), and no complete discordance was observed. The two assays showed a high concordance (<i>Kappa</i> = 0.676, <i>P</i> = 0.000). Minor variants can be detected 18 weeks earlier than the rebound of HBV DNA load and alanine aminotransferase level.</p><p>Conclusions</p><p>A rapid, cost-effective, high sensitive, specific and reliable method of RT-AS-LNA-qPCR with SYBR Green I for early and absolute quantification of HBV YIDD (ATT coding for isoleucine) variants was established, which can provide valuable information for clinical antiretroviral regimens.</p></div

    Amplification plot and standard curve of RT-AS-LNA-qPCR for pMD-18-YMDD.

    No full text
    <p>(A) Amplification plot with different colors represented different concentrations of pMD-18-YMDD plasmids which were illustrated in the figure. (B) Standard curve of pMD-18-YMDD: Y = -3.478X+41.654 (<i>R<sup>2</sup></i> = 0.999).</p
    corecore