14 research outputs found

    Analysis of Cancer Mutation Signatures in Blood by a Novel Ultra-Sensitive Assay: Monitoring of Therapy or Recurrence in Non-Metastatic Breast Cancer

    Get PDF
    BACKGROUND: Tumor DNA has been shown to be present both in circulating tumor cells in blood and as fragments in the plasma of metastatic cancer patients. The identification of ultra-rare tumor-specific mutations in blood would be the ultimate marker to measure efficacy of cancer therapy and/or early recurrence. Herein we present a method for detecting microinsertions/deletions/indels (MIDIs) at ultra-high analytical selectivity. MIDIs comprise about 15% of mutations. METHODS AND FINDINGS: We describe MIDI-Activated Pyrophosphorolysis (MAP), a method of ultra-high analytical selectivity for detecting MIDIs. The high analytical selectivity of MAP is putatively due to serial coupling of two rare events: heteroduplex slippage and mis-pyrophosphorolysis. MAP generally has an analytical selectivity of one mutant molecule per >1 billion wild type molecules and an analytical sensitivity of one mutant molecule per reaction. The analytical selectivity of MAP is about 100,000-fold better than that of our previously described method of Pyrophosphorolysis Activated Polymerization-Allele specific amplification (PAP-A) for detecting MIDIs. The utility of this method is illustrated in two ways. 1) We demonstrate that two EGFR deletions commonly found in lung cancers are not present in tissue from four normal human lungs (10(7) copies of gDNA each) or in blood samples from 10 healthy individuals (10(7) copies of gDNA each). This is inconsistent, at least at an analytical sensitivity of 10(-7), with the hypotheses of (a) hypermutation or (b) strong selection of these growth factor-mutated cells during normal lung development leads to accumulation of pre-neoplastic cells with these EGFR mutations, which sometimes can lead to lung cancer in late adulthood. Moreover, MAP was used for large scale, high throughput "gene pool" analysis. No germline or early embryonic somatic mosaic mutation was detected (at a frequency of >0.3%) for the 15/18 bp EGFR deletion mutations in 6,400 individuals, suggesting that early embryonic EGFR somatic mutation is very rare, inconsistent with hypermutation or strong selection of these deletions in the embryo. 2) The second illustration of MAP utility is in personalized monitoring of therapy and early recurrence in cancer. Tumor-specific p53 mutations identified at diagnosis in the plasma of six patients with stage II and III breast cancer were undetectable after therapy in four women, consistent with clinical remission, and continued to be detected after treatment in two others, reflecting tumor progression. CONCLUSIONS: MAP has an analytical selectivity of one part per billion for detection of MIDIs and an analytical sensitivity of one molecule. MAP provides a general tool for monitoring ultra-rare mutations in tissues and blood. As an example, we show that the personalized cancer signature in six out of six patients with non-metastatic breast cancer can be detected and that levels over time are correlated with the clinical course of disease

    Missense Mutations in the MEFV Gene Are Associated with Fibromyalgia Syndrome and Correlate with Elevated IL-1β Plasma Levels

    Get PDF
    BACKGROUND:Fibromyalgia syndrome (FMS), a common, chronic, widespread musculoskeletal pain disorder found in 2% of the general population and with a preponderance of 85% in females, has both genetic and environmental contributions. Patients and their parents have high plasma levels of the chemokines MCP-1 and eotaxin, providing evidence for both a genetic and an immunological/inflammatory origin for the syndrome (Zhang et al., 2008, Exp. Biol. Med. 233: 1171-1180). METHODS AND FINDINGS:In a search for a candidate gene affecting inflammatory pathways, among five screened in our patient samples (100 probands with FMS and their parents), we found 10 rare and one common alleles for MEFV, a gene in which various compound heterozygous mutations lead to Familial Mediterranean Fever (FMF). A total of 2.63 megabases of genomic sequence of the MEFV gene were scanned by direct sequencing. The collection of rare missense mutations (all heterozygotes and tested in the aggregate) had a significant elevated frequency of transmission to affecteds (p = 0.0085, one-sided, exact binomial test). Our data provide evidence that rare missense variants of the MEFV gene are, collectively, associated with risk of FMS and are present in a subset of 15% of FMS patients. This subset had, on average, high levels of plasma IL-1beta (p = 0.019) compared to FMS patients without rare variants, unaffected family members with or without rare variants, and unrelated controls of unknown genotype. IL-1beta is a cytokine associated with the function of the MEFV gene and thought to be responsible for its symptoms of fever and muscle aches. CONCLUSIONS:Since misregulation of IL-1beta expression has been predicted for patients with mutations in the MEFV gene, we conclude that patients heterozygous for rare missense variants of this gene may be predisposed to FMS, possibly triggered by environmental factors

    SNPs in human miRNA genes affect biogenesis and function

    No full text
    MicroRNAs (miRNAs) are 21–25-nucleotide-long, noncoding RNAs that are involved in translational regulation. Most miRNAs derive from a two-step sequential processing: the generation of pre-miRNA from pri-miRNA by the Drosha/DGCR8 complex in the nucleus, and the generation of mature miRNAs from pre-miRNAs by the Dicer/TRBP complex in the cytoplasm. Sequence variation around the processing sites, and sequence variations in the mature miRNA, especially the seed sequence, may have profound affects on miRNA biogenesis and function. In the context of analyzing the roles of miRNAs in Schizophrenia and Autism, we defined at least 24 human X-linked miRNA variants. Functional assays were developed and performed on these variants. In this study we investigate the affects of single nucleotide polymorphisms (SNPs) on the generation of mature miRNAs and their function, and report that naturally occurring SNPs can impair or enhance miRNA processing as well as alter the sites of processing. Since miRNAs are small functional units, single base changes in both the precursor elements as well as the mature miRNA sequence may drive the evolution of new microRNAs by altering their biological function. Finally, the miRNAs examined in this study are X-linked, suggesting that the mutant alleles could be determinants in the etiology of diseases

    Evidence for X-chromosomal schizophrenia associated with microRNA alterations.

    Get PDF
    Schizophrenia is a severe disabling brain disease affecting about 1% of the population. Individual microRNAs (miRNAs) affect moderate downregulation of gene expression. In addition, components required for miRNA processing and/or function have also been implicated in X-linked mental retardation, neurological and neoplastic diseases, pointing to the wide ranging involvement of miRNAs in disease.To explore the role of miRNAs in schizophrenia, 59 microRNA genes on the X-chromosome were amplified and sequenced in males with (193) and without (191) schizophrenia spectrum disorders to test the hypothesis that ultra-rare mutations in microRNA collectively contribute to the risk of schizophrenia. Here we provide the first association of microRNA gene dysfunction with schizophrenia. Eight ultra-rare variants in the precursor or mature miRNA were identified in eight distinct miRNA genes in 4% of analyzed males with schizophrenia. One ultra-rare variant was identified in a control sample (with a history of depression) (8/193 versus 1/191, p = 0.02 by one-sided Fisher's exact test, odds ratio = 8.2). These variants were not found in an additional 7,197 control X-chromosomes.Functional analyses of ectopically expressed copies of the variant miRNA precursors demonstrate loss of function, gain of function or altered expression levels. While confirmation is required, this study suggests that microRNA mutations can contribute to schizophrenia

    Identification of high risk DISC1 protein structural variants in patients with bipolar spectrum disorder

    No full text
    In a large Scottish pedigree, a balanced translocation t (1;11)(q42.1;q14.3) disrupting the DISC1 and DISC2 genes segregates with major mental illness, including schizophrenia and depression. A frame-shift carboxyl-terminal deletion was reported in DISC1 in an American family with schizophrenia, but subsequently found in two controls. Herein, we test one hypothesis utilizing a large scale case-control mutation analysis: uncommon DISC1 variants are associated with high risk for bipolar spectrum disorder. We have analyzed the regions of likely functional significance in the DISC1 gene in 504 patients with bipolar spectrum disorder and 576 ethnically similar controls. Five patients were heterozygous for ultra-rare protein structural variants not found in the 576 controls (p=0.02, one-sided Fisher's exact test) and shown to be ultra-rare by their absence in a pool of 10,000 control alleles. In our sample, ultra-rare (private) protein structural variants in DISC1 are associated with an estimated attributable risk of about 0.5% in bipolar spectrum disorder. These data are consistent with: (i) the high frequency of depression in the large Scottish family with a translocation disrupting DISC1; (ii) linkage disequilibrium analysis demonstrating haplotypes associated with relatively small increases in risk for bipolar disorder (<3-fold odds ratio). The data illustrate how low/moderate risk haplotypes that might be found by the HapMap project can be followed up by resequencing to identify protein structural variants with high risk, low frequency and of potential clinical utility

    Vitamin D receptor variants in 192 patients with schizophrenia and other psychiatric diseases

    No full text
    Intriguing parallels have been noted previously between the biology of Vitamin D and the epidemiology of schizophrenia. We have scanned the Vitamin D receptor (VDR) gene by DOVAM-S (Detection of Virtually All Mutations-SSCP), a robotically enhanced multiplexed scanning method. In total, 100 patients with schizophrenia (86 Caucasians and 14 African-Americans) were scanned. In addition, pilot experiments were performed in patients with bipolar disorder (BPD) (24), autism (24), attention deficit hyperactivity disorder (ADHD) (24), and alcoholism (20). A total of 762 kb of the VDR genomic sequence was scanned. R208N and V339I were each found in one African-American patient, while absent in 35 African-American controls without schizophrenia (2/14 versus 0/35, P = 0.08). Within the power of the study (≥1.6-fold relative risk), the common M1T variant is not associated with schizophrenia. In the 92 scanned patients with other psychiatric diseases, R173S was found in a single patient with bipolar disorder. In conclusion, we describe three novel structural variants of the Vitamin D receptor. Further study is required to clarify their role, if any, in psychiatric disease
    corecore