12 research outputs found

    Beyond Control: Exploring Novel File System Objects for Data-Only Attacks on Linux Systems

    Full text link
    The widespread deployment of control-flow integrity has propelled non-control data attacks into the mainstream. In the domain of OS kernel exploits, by corrupting critical non-control data, local attackers can directly gain root access or privilege escalation without hijacking the control flow. As a result, OS kernels have been restricting the availability of such non-control data. This forces attackers to continue to search for more exploitable non-control data in OS kernels. However, discovering unknown non-control data can be daunting because they are often tied heavily to semantics and lack universal patterns. We make two contributions in this paper: (1) discover critical non-control objects in the file subsystem and (2) analyze their exploitability. This work represents the first study, with minimal domain knowledge, to semi-automatically discover and evaluate exploitable non-control data within the file subsystem of the Linux kernel. Our solution utilizes a custom analysis and testing framework that statically and dynamically identifies promising candidate objects. Furthermore, we categorize these discovered objects into types that are suitable for various exploit strategies, including a novel strategy necessary to overcome the defense that isolates many of these objects. These objects have the advantage of being exploitable without requiring KASLR, thus making the exploits simpler and more reliable. We use 18 real-world CVEs to evaluate the exploitability of the file system objects using various exploit strategies. We develop 10 end-to-end exploits using a subset of CVEs against the kernel with all state-of-the-art mitigations enabled.Comment: 14 pages, in submission of the 31th ACM Conference on Computer and Communications Security (CCS), 202

    Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes

    Get PDF
    Li metal has been recognized as the most promising anode materials for next-generation high-energy-density batteries, however, the inherent issues of dendrite growth and huge volume fluctuations upon Li plating/stripping normally result in fast capacity fading and safety concerns. Functionalized Cu current collectors have so far exhibited significant regulatory effects on stabilizing Li metal anodes (LMAs), and hold a great practical potential owing to their easy fabrication, low-cost and good compatibility with the existing battery technology. In this review, a comprehensive overview of Cu-based current collectors, including planar modified Cu foil, 3D architectured Cu foil and nanostructured 3D Cu substrates, for Li metal batteries is provided. Particularly, the design principles and strategies of functionalized Cu current collectors associated with their functionalities in optimizing Li plating/stripping behaviors are discussed. Finally, the critical issues where there is incomplete understanding and the future research directions of Cu current collectors in practical LMAs are also prospected. This review may shed light on the critical understanding of current collector engineering for high-energy-density Li metal batteries

    Advances in the emerging gradient designs of Li metal hosts

    No full text
    Developing host has been recognized a potential countermeasure to circumvent the intrinsic drawbacks of Li metal anode (LMA), such as uncontrolled dendrite growth, unstable solid electrolyte interface, and infinite volume fluctuations. To realize proper Li accommodation, particularly bottom-up deposition of Li metal, gradient designs of host materials including lithiophilicity and/or conductivity have attracted a great deal of attention in recent years. However, a critical and specialized review on this quickly evolving topic is still absent. In this review, we attempt to comprehensively summarize and update the related advances in guiding Li nucleation and deposition. First, the fundamentals regarding Li deposition are discussed, with particular attention to the gradient design principles of host materials. Correspondingly, the progress of creating different gradients in terms of lithiophilicity, conductivity, and their hybrid is systematically reviewed. Finally, future challenges and perspective on the gradient design of advanced hosts towards practical LMAs are provided, which would provide a useful guidance for future studies.Published versionThis work was financially supported by the National Natural Science Foundation of China (51902261 and 61935017), the National Key Research and Development Program of China (2020YFA0709900), the Joint Research Funds of the Department of Science & Technology of Shaanxi Province and NPU (2020GXLH-Z-024), the Natural Science Basic Research Program of Shaanxi (2021JQ-107), Guangdong Basic and Applied Basic Research Foundation (2020A1515110604), the Natural Science Foundation of Ningbo (202003N4053), and the Fundamental Research Funds for the Central Universities(31020180QD116 and G2021KY05106)

    Synergistic Effect of Titanate-Anatase Heterostructure and Hydrogenation-Induced Surface Disorder on Photocatalytic Water Splitting

    No full text
    Black TiO<sub>2</sub> obtained by hydrogenation has attracted enormous attention due to its unusual photocatalytic activity. In this contribution, a novel photocatalyst containing both a titanate–anatase heterostructure and a surface disordered shell was in situ synthesized by using a one-step hydrogenation treatment of titanate nanowires at ambient pressure, which exhibited remarkably improved photocatalytic activity for water splitting under simulated solar light. The as-hydrogenated catalyst with a heterostructure and a surface disordered shell displayed a high hydrogen production rate of 216.5 μmol·h<sup>–1</sup>, which is ∼20 times higher than the Pt-loaded titanate nanowires lacking of such unique structure. The in situ-generated heterostructure and hydrogenation-induced surface disorder can efficiently promote the separation and transfer of photoexcited electron–hole pairs, inhibiting the fast recombination of the generated charge carriers. A general synergistic effect of the heterostructure and the surface disordered shell on photocatalytic water splitting is revealed for the first time in this work, and the as-proposed photocatalyst design and preparation strategy could be widely extended to other composite photocatalytic systems used for solar energy conversion

    High-Temperature Oxidation Behavior of Cr-Ni-Mo Hot-Work Die Steels

    No full text
    The oxidation of 3Cr3Mo2NiW and 3CrNi3Mo steels was studied at 600 &deg;C in air, and the test results suggest that the parabolic rate law fitted the oxidation kinetics of both steels. The microstructure, morphology, structure, and phase composition of the oxide film cross-sectional layers of the two Cr-Ni-Mo hot-work die steels were analyzed using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), and X-ray diffraction (XRD). The influences of Cr, Ni, and Mo on the high-temperature oxidation resistance of the two Cr-Ni-Mo hot-work die steels are discussed, and the oxidation mechanism is summarized. Heat-treated samples were analyzed using electron backscattered diffraction (EBSD) to obtain inverse pole figures (IPFs) and average sample grain sizes, and the percentages of twin grain boundaries (TGBs) (&theta; = 60&deg;) were also measured. After heat treatment, recrystallization was observed in both steels with a large portion of twin grain boundaries. After 10 h of oxidation, the dense chromium-rich oxide layer that formed in the inner oxide layer of 3Cr3Mo2NiW steel effectively prevented the continuation of oxidation. The inner oxide layer in 3CrNi3Mo steel formed an adhesion layer with a network structure composed mainly of Ni- and Cr-rich spinel oxide, without forming a barrier to prevent oxidation

    Atypical Response in Metastatic Non-Small Cell Lung Cancer Treated with PD-1/PD-L1 Inhibitors: Radiographic Patterns and Clinical Value of Local Therapy

    No full text
    Purpose: To explore the clinical characteristics, management, and survival outcomes of advanced NSCLC patients treated with PD-1/PD-L1 inhibitors who presented with an atypical response (AR). Methods: A total of 926 PD-1/PD-L1-inhibitor-treated patients with metastatic NSCLC from three academic centers were retrospectively reviewed. All measurable lesions were evaluated by RECIST version 1.1. Results: Fifty-six (6.1%) patients developed AR. The median time to the occurrence of AR was 2.0 months. Patients with no fewer than 3 metastatic organs at baseline were more prone to develop AR in advanced NSCLC (p = 0.038). The common sites of progressive lesions were lymph nodes (33.8%) and lungs (29.7%). The majority (78.2%) of patients with AR had only 1&ndash;2 progressive tumor lesions, and most (89.1%) of the progressive lesions developed from originally existing tumor sites. There was no significance in terms of survival between patients with AR and those with typical response (TR). Local therapy was an independent predictor for PFS of patients with AR (p = 0.025). Conclusions: AR was not an uncommon event in patients with metastatic NSCLC treated with PD-1/PD-L1 inhibitors, and it had a comparable prognosis to those with TR. Proper local therapy targeting progressive lesions without discontinuing original PD-1/PD-L1 inhibitors may improve patient survival

    Atypical Response in Metastatic Non-Small Cell Lung Cancer Treated with PD-1/PD-L1 Inhibitors: Radiographic Patterns and Clinical Value of Local Therapy

    No full text
    Purpose: To explore the clinical characteristics, management, and survival outcomes of advanced NSCLC patients treated with PD-1/PD-L1 inhibitors who presented with an atypical response (AR). Methods: A total of 926 PD-1/PD-L1-inhibitor-treated patients with metastatic NSCLC from three academic centers were retrospectively reviewed. All measurable lesions were evaluated by RECIST version 1.1. Results: Fifty-six (6.1%) patients developed AR. The median time to the occurrence of AR was 2.0 months. Patients with no fewer than 3 metastatic organs at baseline were more prone to develop AR in advanced NSCLC (p = 0.038). The common sites of progressive lesions were lymph nodes (33.8%) and lungs (29.7%). The majority (78.2%) of patients with AR had only 1–2 progressive tumor lesions, and most (89.1%) of the progressive lesions developed from originally existing tumor sites. There was no significance in terms of survival between patients with AR and those with typical response (TR). Local therapy was an independent predictor for PFS of patients with AR (p = 0.025). Conclusions: AR was not an uncommon event in patients with metastatic NSCLC treated with PD-1/PD-L1 inhibitors, and it had a comparable prognosis to those with TR. Proper local therapy targeting progressive lesions without discontinuing original PD-1/PD-L1 inhibitors may improve patient survival
    corecore