300 research outputs found

    Fault Location in Power Distribution Systems via Deep Graph Convolutional Networks

    Full text link
    This paper develops a novel graph convolutional network (GCN) framework for fault location in power distribution networks. The proposed approach integrates multiple measurements at different buses while taking system topology into account. The effectiveness of the GCN model is corroborated by the IEEE 123 bus benchmark system. Simulation results show that the GCN model significantly outperforms other widely-used machine learning schemes with very high fault location accuracy. In addition, the proposed approach is robust to measurement noise and data loss errors. Data visualization results of two competing neural networks are presented to explore the mechanism of GCN's superior performance. A data augmentation procedure is proposed to increase the robustness of the model under various levels of noise and data loss errors. Further experiments show that the model can adapt to topology changes of distribution networks and perform well with a limited number of measured buses.Comment: Accepcted by IEEE Journal on Selected Areas in Communicatio

    Facing the challenges of new-type power systems

    Get PDF

    Building renewable energy delivery channels

    Get PDF

    Shaping future low-carbon renewable energy systems

    Get PDF

    Convolutional Sequence to Sequence Non-intrusive Load Monitoring

    Full text link
    A convolutional sequence to sequence non-intrusive load monitoring model is proposed in this paper. Gated linear unit convolutional layers are used to extract information from the sequences of aggregate electricity consumption. Residual blocks are also introduced to refine the output of the neural network. The partially overlapped output sequences of the network are averaged to produce the final output of the model. We apply the proposed model to the REDD dataset and compare it with the convolutional sequence to point model in the literature. Results show that the proposed model is able to give satisfactory disaggregation performance for appliances with varied characteristics.Comment: This paper is submitted to IET-The Journal of Engineerin

    Energy provision for powering a shared future

    Get PDF

    Fault Detection for Covered Conductors With High-Frequency Voltage Signals: From Local Patterns to Global Features

    Full text link
    The detection and characterization of partial discharge (PD) are crucial for the insulation diagnosis of overhead lines with covered conductors. With the release of a large dataset containing thousands of naturally obtained high-frequency voltage signals, data-driven analysis of fault-related PD patterns on an unprecedented scale becomes viable. The high diversity of PD patterns and background noise interferences motivates us to design an innovative pulse shape characterization method based on clustering techniques, which can dynamically identify a set of representative PD-related pulses. Capitalizing on those pulses as referential patterns, we construct insightful features and develop a novel machine learning model with a superior detection performance for early-stage covered conductor faults. The presented model outperforms the winning model in a Kaggle competition and provides the state-of-the-art solution to detect real-time disturbances in the field.Comment: To be published in IEEE Transactions on Smart Gri
    • …
    corecore