49 research outputs found

    Recent advances in mRNA cancer vaccines: meeting challenges and embracing opportunities

    Get PDF
    Since the successful application of messenger RNA (mRNA) vaccines in preventing COVID-19, researchers have been striving to develop mRNA vaccines for clinical use, including those exploited for anti-tumor therapy. mRNA cancer vaccines have emerged as a promising novel approach to cancer immunotherapy, offering high specificity, better efficacy, and fewer side effects compared to traditional treatments. Multiple therapeutic mRNA cancer vaccines are being evaluated in preclinical and clinical trials, with promising early-phase results. However, the development of these vaccines faces various challenges, such as tumor heterogeneity, an immunosuppressive tumor microenvironment, and practical obstacles like vaccine administration methods and evaluation systems for clinical application. To address these challenges, we highlight recent advances from preclinical studies and clinical trials that provide insight into identifying obstacles associated with mRNA cancer vaccines and discuss potential strategies to overcome them. In the future, it is crucial to approach the development of mRNA cancer vaccines with caution and diligence while promoting innovation to overcome existing barriers. A delicate balance between opportunities and challenges will help guide the progress of this promising field towards its full potential

    Postoperative ctDNA detection predicts relapse but has limited effects in guiding adjuvant therapy in resectable stage I NSCLC

    Get PDF
    BackgroundTo date, identifying resectable stage I non-small cell lung cancer (NSCLC) patients likely to benefit from adjuvant therapy (ADT) remains a major challenge. Previous studies suggest that circulating tumor DNA (ctDNA) is emerging as a promising biomarker for NSCLC. However, the effectiveness of ctDNA detection in guiding ADT for resectable stage I NSCLC patients remains elusive. This study aimed to elucidate the role of ctDNA detection in estimating prognosis and guiding ADT for resectable stage I NSCLC patients.MethodsIndividual patient data and ctDNA results data were collected from 270 patients across four independent cohorts. The detection of ctDNA was conducted at 3 days to 1 month after surgery. The endpoint for this study was relapse-free survival (RFS) and overall survival (OS).ResultsOf the 270 resectable stage I NSCLC patients, 9 patients with ctDNA-positive and 261 patients with ctDNA-negative. We found that the risk of recurrence was significantly lower in the ctDNA-negative group compared to the ctDNA-positive group(HR=0.11, p<0.0001). However, there is no difference in the risk of death between the two groups (p =0.39). In the ctDNA-positive group, there were no significant differences in RFS between patients who received ADT and patients who did not receive ADT (p =0.58). In the ctDNA-negative group, those who received ADT had a worse RFS in comparison with those who did not receive ADT (HR=2.36, p =0.029). No difference in OS was seen between patients who received ADT and patients who did not receive ADT in both the ctDNA-positive group and the ctDNA-negative group (All p values>0.05). Furthermore, there was no difference in RFS and OS between patients who received chemotherapy-based or tyrosine kinase inhibitor-based ADT and patients who did not receive ADT in both the ctDNA-positive group and the ctDNA-negative group (All p values>0.05).ConclusionsPostoperative ctDNA detection can be a prognostic marker to predict recurrence but has limited effects in guiding ADT for resectable stage I NSCLC. Future prospective investigations are needed to verify these results

    Cassava genome from a wild ancestor to cultivated varieties

    Get PDF
    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology

    Extinction of branching processes in varying environments

    No full text
    Let q be the extinction probability and [tau]0 be the extinction time of a Galton-Watson branching process in varying environments. In this paper, some useful upper and lower bounds of q and E[tau]0 are estimated respectively.

    Current Studies on Molecular Mechanisms of Insulin Resistance

    No full text
    Diabetes is a metabolic disease that raises the risk of microvascular and neurological disorders. Insensitivity to insulin is a characteristic of type II diabetes, which accounts for 85-90 percent of all diabetic patients. The fundamental molecular factor of insulin resistance may be impaired cell signal transduction mediated by the insulin receptor (IR). Several cell-signaling proteins, including IR, insulin receptor substrate (IRS), and phosphatidylinositol 3-kinase (PI3K), have been recognized as being important in the impaired insulin signaling pathway since they are associated with a large number of proteins that are strictly regulated and interact with other signaling pathways. Many studies have found a correlation between IR alternative splicing, IRS gene polymorphism, the complicated regulatory function of IRS serine/threonine phosphorylation, and the negative regulatory role of p85 in insulin resistance and diabetes mellitus. This review brings up-to-date knowledge of the roles of signaling proteins in insulin resistance in order to aid in the discovery of prospective targets for insulin resistance treatment

    Transcriptomic analysis of gene expression in mice treated with troxerutin.

    Get PDF
    Troxerutin, a semi-synthetic derivative of the natural bioflavanoid rutin, has been reported to possess many beneficial effects in human bodies, such as vasoprotection, immune support, anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide transcription in blood cells are still unknown. In order to find out effects of troxerutin on gene transcription, a high-throughput RNA sequencing was employed to analysis differential gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demonstrated that the expression of only fifteen genes was significantly changed by the treatment with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regulated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utilizing the Gene Ontology (GO), and the differential expression induced by troxerutin was further evaluated by real-time quantitative PCR (Q-PCR)

    Handheld snapshot multi-spectral camera at tens-of-megapixel resolution

    No full text
    Abstract Multi-spectral imaging is a fundamental tool characterizing the constituent energy of scene radiation. However, current multi-spectral video cameras cannot scale up beyond megapixel resolution due to optical constraints and the complexity of the reconstruction algorithms. To circumvent the above issues, we propose a tens-of-megapixel handheld multi-spectral videography approach (THETA), with a proof-of-concept camera achieving 65-megapixel videography of 12 wavebands within visible light range. The high performance is brought by multiple designs: We propose an imaging scheme to fabricate a thin mask for encoding spatio-spectral data using a conventional film camera. Afterwards, a fiber optic plate is introduced for building a compact prototype supporting pixel-wise encoding with a large space-bandwidth product. Finally, a deep-network-based algorithm is adopted for large-scale multi-spectral data decoding, with the coding pattern specially designed to facilitate efficient coarse-to-fine model training. Experimentally, we demonstrate THETA’s advantageous and wide applications in outdoor imaging of large macroscopic scenes

    Transcriptomic analysis of gene expression in mice treated with troxerutin

    No full text
    <div><p>Troxerutin, a semi-synthetic derivative of the natural bioflavanoid rutin, has been reported to possess many beneficial effects in human bodies, such as vasoprotection, immune support, anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide transcription in blood cells are still unknown. In order to find out effects of troxerutin on gene transcription, a high-throughput RNA sequencing was employed to analysis differential gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demonstrated that the expression of only fifteen genes was significantly changed by the treatment with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regulated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utilizing the Gene Ontology (GO), and the differential expression induced by troxerutin was further evaluated by real-time quantitative PCR (Q-PCR).</p></div

    Gene Ontology (GO) classification of differentially expressed genes (DEGs).

    No full text
    <p>DEGs are classified into three major domains: biological process (BP), cellular component (CC) and molecular function (MF). The left y-axis indicates the percentage of a specific category of genes in a domain. The right y-axis indicates the number of genes in the category. (Con, control group; YR, experimental group).</p
    corecore