202 research outputs found

    Size Effect on the Behavior of Thermal Elastohydrodynamic Lubrication of Roller Pairs

    Get PDF
    In order to investigate the size effect on elastohydrodynamic lubrication (EHL) of roller pairs, complete numerical solutions for both the Newtonian fluid and the Eyring fluid thermal EHL problems of roller pairs under steady state conditions have been achieved. It can be seen that there is no size effect on the isothermal EHL performance; however, there is a very strong size effect on the thermal EHL performance. Results show that the term of shearing heat is the most important factor for the film temperature when the size of a contact changes. Comparison between the Newtonian solution and the Eyring solution has been made under some operating conditions. It is interesting to see that the effective viscosity of the Eyring fluid is nearly the same as that of the Newtonian fluid when the size of a contact is large enough. The non-Newtonian effect, therefore, can be ignored when the size of a contact is very large. It is equally interesting to see that the thermal effect can be ignored when the size of a contact is very small. In addition, the influence of the velocity parameter, the load parameter, and the slide-roll ratio on the lubricating performance for various sizes of contacts has been investigated

    Characteristic of fixed abrasive polishing for fused silica in anhydrous environment

    Get PDF
    Abstract(#br)In order to overcome the randomness of free abrasive polishing (CMP), abrasive waste and the resulting hydration layer, this paper presents a fixed abrasive polishing technique in the anhydrous environment. We have achieved a stable polishing wheel sintering process. The pellet we made have applied to fused silica polishing.(#br)It is found that the surface profile accuracy and roughness convergence speed are significantly improved comparing with the free abrasive polishing, and the pellet did not break and wears evenly. The influences of changing parameters including pressure, rotation speed on the material removal rate and surface roughness is examined. Removal rate does not increase with applied pressure and rotation speed, which is inconsistent with Preston’s formula. The heat generated in machine process is paramount parameters determining removal efficiency. In order to get the most suitable processing temperature, We employed in-situ infrared camera and finite element analysis to test the temperature, which clarify the material removal does not increase with applied pressure and rotation speed in dry fixed abrasive polishing. Further, for testing the properties and stability of the pellet, the chips and polishing wheel were chemical analyzed using EDS and XRD, the results show a probable mechanism

    A High Precision and Multifunctional Electro‐Optical Conversion Efficiency Measurement System for Metamaterial‐Based Thermal Emitters

    Get PDF
    In this study, a multifunctional high-vacuum system was established to measure the electro-optical conversion efficiency of metamaterial-based thermal emitters with built-in heaters. The system is composed of an environmental control module, an electro-optical conversion measurement module, and a system control module. The system can provide air, argon, high vacuum, and other conventional testing environments, combined with humidity control. The test chamber and sample holder are carefully designed to minimize heat transfer through thermal conduction and convection. The optical power measurements are realized using the combination of a water-cooled KBr flange, an integrating sphere, and thermopile detectors. This structure is very stable and can detect light emission at the μW level. The system can synchronously detect the heating voltage, heating current, optical power, sample temperatures (both top and bottom), ambient pressure, humidity, and other environmental parameters. The comprehensive parameter detection capability enables the system to monitor subtle sample changes and perform failure mechanism analysis with the aid of offline material analysis using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, the system can be used for fatigue and high-low temperature impact tests

    Probing electronic-vibrational dynamics of N2+ induced by strong-field ionization

    Full text link
    The coupled electronic-vibrational dynamics of nitrogen ions induced by strong-field ionization is investigated theoretically to corroborate the recent transient X-ray K-edge absorption experiment [PRL 129, 123002 (2022)], where the population distribution of three electronic states in air lasing of N2+ was determined for the first time. By extending the ionization-coupling model to include the transient absorption, we successfully reproduce the time-resolved X-ray absorption spectra of nitrogen ions observed in the experiment. By identifying the contributions from different electronic states, the study provides different interpretation revealing the significant role of excited state A arising from the strong coupling between vibrational states in strong laser fields. It indicates that the electronic population inversion occurs at least for certain alignment of nitrogen molecules. The theory helps uncovering new features of absorption from forbidden transitions during ionization and confirming that the vibration coherence at each electronic channel induces the modulation of absorbance after strong field ionization. A new scheme is proposed to determine the population transfer at different probing geometry to avoid the spectral overlap. This work offers valuable insights into the intricate interplay between electronic and vibrational dynamics and helps to resolve the debate on nitrogen air lasing

    Comparison of PET/CT and MRI in the Diagnosis of Bone Metastasis in Prostate Cancer Patients: A Network Analysis of Diagnostic Studies

    Get PDF
    Background: Accurate diagnosis of bone metastasis status of prostate cancer (PCa) is becoming increasingly more important in guiding local and systemic treatment. Positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) have increasingly been utilized globally to assess the bone metastases in PCa. Our meta-analysis was a high-volume series in which the utility of PET/CT with different radioligands was compared to MRI with different parameters in this setting. Materials and Methods: Three databases, including Medline, Embase, and Cochrane Library, were searched to retrieve original trials from their inception to August 31, 2019 according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. The methodological quality of the included studies was assessed by two independent investigators utilizing Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). A Bayesian network meta-analysis was performed using an arm-based model. Absolute sensitivity and specificity, relative sensitivity and specificity, diagnostic odds ratio (DOR), and superiority index, and their associated 95% confidence intervals (CI) were used to assess the diagnostic value. Results: Forty-five studies with 2,843 patients and 4,263 lesions were identified. Network meta-analysis reveals that 68Ga-labeled prostate membrane antigen (68Ga-PSMA) PET/CT has the highest superiority index (7.30) with the sensitivity of 0.91 and specificity of 0.99, followed by 18F-NaF, 11C-choline, 18F-choline, 18F-fludeoxyglucose (FDG), and 18F-fluciclovine PET/CT. The use of high magnetic field strength, multisequence, diffusion-weighted imaging (DWI), and more imaging planes will increase the diagnostic value of MRI for the detection of bone metastasis in prostate cancer patients. Where available, 3.0-T high-quality MRI approaches 68Ga-PSMA PET/CT was performed in the detection of bone metastasis on patient-based level (sensitivity, 0.94 vs. 0.91; specificity, 0.94 vs. 0.96; superiority index, 4.43 vs. 4.56). Conclusions: 68Ga-PSMA PET/CT is recommended for the diagnosis of bone metastasis in prostate cancer patients. Where available, 3.0-T high-quality MRI approaches 68Ga-PSMA PET/CT should be performed in the detection of bone metastasis

    Effectiveness of 18F-FDG PET/CT in the diagnosis, staging and recurrence monitoring of Ewing sarcoma family of tumors: A meta-analysis of 23 studies

    Get PDF
    Background: To investigate the value of positron emission tomography (PET) and PET/computed tomography (CT) using fluorine-18-fluorodeoxyglucose (F-18-FDG) in the diagnosis, staging, restaging and recurrence monitoring of Ewing sarcoma family of tumors (ESFTs), a meta-analysis was performed through systematically searching PubMed, Embase, and Cochrane Central library to retrieve articles. Methods: After screening and diluting out the articles that met inclusion criteria to be used for statistical analysis the pooled evaluation indexes including sensitivity, specificity, and diagnostic odd ratio (DOR) as well as the summary receiver operating characteristic curve (SROC) were calculated involving diagnostic data (true positive, false positive, false negative, and true negative) extracted from original studies. Results: Screening determined that out of 2007, 23 studies involving a total of 524 patients were deemed viable for inclusion in the meta-analysis. The results of the analysis showed that the sensitivity and specificity were at 86% and 80%, respectively. Additionally, a satisfactory accuracy of F-18-FDG PET and PET/CT was observed in detecting ESFT recurrence, lung metastasis, and osseous metastasis. Conclusion: This meta-analysis suggests that F-18-FDG PET and PET/CT with an extremely high accuracy could be considered a valuable method for detecting distant metastasis and post-operational recurrence of ESFT, which might have a profound impact on the development of treatment protocols for ESFT
    corecore