187 research outputs found

    Active control of medium-voltage cascaded three-level neutral-point-clamped converters

    Get PDF
    Three-Level Neutral-Point-Clamped (3L-NPC) converters have been widely used in the high-power motor drives. In recent years, a novel cascaded 3L-NPC converter has been developed and adopted in the ANGLE-DC project − a 30 MVA MVDC link demonstration project in North Wales, UK. This cascaded configuration provides exceptional waveform quality, modular design and a cost-effective solution to MVDC applications. Although the control strategy for a single 3L-NPC converter has been well established, control of the cascaded 3L-NPC converter is still under-researched. The potential challenges to control strategy design arising from their cascaded connections need to be specifically explored. In particular, due to the series DC connection, the voltage imbalance across 3L-NPC submodules (SMs) may occur and influence the system stability. This issue may occur in converter stations where power is controlled in either point-to-point or multi-terminal systems. Beyond the electric characteristic, thermal characteristic is also vital to the performance of system. Thermal imbalance of 3L-NPC SMs may occur in a cascaded 3L-NPC converter even the voltage and power are equally shared, which poses great challenges to the system reliability. To address aforementioned challenges, this thesis developed suitable control schemes for the cascaded 3L-NPC converter system and demonstrated their operation using a 30 kVA MVDC testbed based on the real ANGLE-DC project. The DC voltage imbalance was analysed through a small-signal model-based approach. Two DC voltage balancing methods with and without communications were presented. The PI-based method can automatically switch to the droop-based method upon failures of communication. The DC voltage imbalance of the cascaded 3L-NPC converter is further investigated in a three-terminal MVDC network in consideration together with the interactions of control characteristics between different converter stations and the power control accuracy. Then suitable control scheme was proposed. Multiple crossovers due to the interactions are avoided while DC voltage balance and power control accuracy are achieved as well. To mitigate the thermal imbalance, a thermal sharing controller was superposed on the DC voltage balancing controller to regulate the active and reactive power of each SM according to their individual junction temperatures. The thermal stresses are hence equally shared in presence of mismatched component parameters and cooling system failures. The effectiveness of presented methods in the thesis has been verified in MATLAB/Simulink simulation and experimentally validated

    Effects of Calcination Temperature on Preparation of Boron-Doped TiO 2

    Get PDF
    Boron-doped TiO2 photocatalyst was prepared by a modified sol-gel method. Being calcinated at temperatures from 300°C to 600°C, all the 3% B-TiO2 samples presented anatase TiO2 phase, and TiO2 crystallite sizes were calculated to be 7.6, 10.3, 13.6, and 27.3 nm, respectively. The samples were composed of irregular particles with rough surfaces in the size range within 3 Όm. Ti atoms were in an octahedron skeleton and existed mainly in the form of Ti4+, while the Ti-O-B structure was the main boron existing form in the 3% B-TiO2 sample. When calcination temperature increased from 300°C to 600°C, specific surface area decreased sharply from 205.6 m2/g to 31.8 m2/g. The average pore diameter was 10.53 nm with accumulative pore volume of 0.244 mL/g for the 3% B-TiO2 sample calcinated at 400°C, which performed optimal photocatalytic degradation activity. After 90 min of UV-light irradiation, degradation rate of methyl orange was 96.7% on the optimized photocatalyst

    Multistage CC-CV Charge Method for Li-Ion Battery

    Get PDF
    Charging the Li-ion battery with constant current and constant voltage (CC-CV) strategy at −10°C can only reach 48.47% of the normal capacity. To improve the poor charging characteristic at low temperature, the working principle of charging battery at low temperature is analyzed using electrochemical model and first-order RC equivalent circuit model; moreover, the multistage CC-CV strategy is proposed. In the proposed multistage CC-CV strategy, the charging current is decreased to extend the charging process when terminal voltage reaches the charging cut-off voltage. The charging results of multistage CC-CV strategy are obtained at 25°C, 0°C, and −10°C, compared with the results of CC-CV and two-stage CC-CC strategies. The comparison results show that, at the target temperatures, the charging capacities are increased with multistage CC-CV strategy and it is notable that the charging capacity can reach 85.32% of the nominal capacity at −10°C; also, the charging time is decreased

    Decentralized control for multi-terminal cascaded medium-voltage converters considering multiple crossovers

    Get PDF
    Decentralized control with multiple droop characteristics can significantly improve the accuracy of power flow in medium-voltage direct-current (MVdc) networks. However, multiple crossovers caused by different control characteristics can lead to the drifts of power and voltage and instability issues. When this type of control is implemented in the cascaded three-level neutral-point-clamped (C3L-NPC) converters, on one hand, the mechanism of such the power and voltage drifts was not investigated. On the other hand, power control accuracy, dc voltage balancing across submodules (SMs) and multiple crossovers should all be considered, which requires suitable control methods. To address the challenges, firstly, the mechanism behind the power and dc voltage drifts is analyzed. Secondly, a control scheme is presented to improve the power control accuracy and dc voltage balancing and concurrently, to avoid the multiple crossovers. This is achieved by suitable droop gain design and adding a secondary power compensator. The presented control scheme is verified in MATLAB/Simulink simulation and experimentally validated in a three-terminal MVdc testbed. Results show that the accuracy of steady-state power flow is improved by 15% due to the elimination of multiple crossovers, while the power accuracy at dynamics improved by 13% with the secondary power compensato

    Short-term origin-destination demand prediction in urban rail transit systems: A channel-wise attentive split-convolutional neural network method

    Full text link
    Short-term origin-destination (OD) flow prediction in urban rail transit (URT) plays a crucial role in smart and real-time URT operation and management. Different from other short-term traffic forecasting methods, the short-term OD flow prediction possesses three unique characteristics: (1) data availability: real-time OD flow is not available during the prediction; (2) data dimensionality: the dimension of the OD flow is much higher than the cardinality of transportation networks; (3) data sparsity: URT OD flow is spatiotemporally sparse. There is a great need to develop novel OD flow forecasting method that explicitly considers the unique characteristics of the URT system. To this end, a channel-wise attentive split-convolutional neural network (CAS-CNN) is proposed. The proposed model consists of many novel components such as the channel-wise attention mechanism and split CNN. In particular, an inflow/outflow-gated mechanism is innovatively introduced to address the data availability issue. We further originally propose a masked loss function to solve the data dimensionality and data sparsity issues. The model interpretability is also discussed in detail. The CAS-CNN model is tested on two large-scale real-world datasets from Beijing Subway, and it outperforms the rest of benchmarking methods. The proposed model contributes to the development of short-term OD flow prediction, and it also lays the foundations of real-time URT operation and management.Comment: This paper has been accepted by the Transportation Research Part C: Emerging Technologies as a regular pape

    Analysis and mitigation of DC voltage imbalance for medium-voltage cascaded three-level neutral-point-clamped converters

    Get PDF
    The cascaded three-level neutral-point-clamped (3L-NPC) converter and the modular multi-level converter (MMC) are attractive solutions for medium-voltage direct-current (MVDC) applications. Due to their low cost compared to MMCs, cascaded 3L-NPC converters have been adopted in ANGLE-DCa 30 MVA MVDC link demonstration project in North Wales, UK. DC voltage imbalance across submodules (SMs) is a common challenge for both types of MVDC converters. Such imbalance is topology dependent and remains under-researched for cascaded 3L-NPC converters. In this paper, small-signal model-based analysis has been done to reveal that the dc voltage imbalance in cascaded 3L-NPC converters is caused by an unstable system pole. Two voltage balancing methods are presented. The first method is based on PI controllers to precisely regulate SMs voltages without influencing output power. However, it relies on communication between a central controller and local controllers within SMs. The second method uses inverse-droop based control to take over the dc voltage regulation upon loss of communication. Both balancing methods are experimentally validated using a 30 kVA testbed based on the ANGLE-DC project. It has been demonstrated that the dc voltages of SMs can be effectively balanced with both methods during changes of load conditions and dc bus voltages

    Demonstration of Converter Control Interactions in MMC-HVDC Systems

    Get PDF
    Although the control of modular multi-level converters (MMCs) in high-voltage direct-current (HVDC) networks has become a mature subject these days, the potential for adverse interactions between different converter controls remains an under-researched challenge attracting the attention from both academia and industry. Even for point-to-point HVDC links (i.e., simple HVDC systems), converter control interactions may result in the shifting of system operating voltages, increased power losses, and unintended power imbalances at converter stations. To bridge this research gap, the risk of multiple cross-over of control characteristics of MMCs is assessed in this paper through mathematical analysis, computational simulation, and experimental validation. Specifically, the following point-to-point HVDC link configurations are examined: (1) one MMC station equipped with a current versus voltage droop control and the other station equipped with a constant power control; and (2) one MMC station equipped with a power versus voltage droop control and the other station equipped with a constant current control. Design guidelines for droop coefficients are provided to prevent adverse control interactions. A 60-kW MMC test-rig is used to experimentally verify the impact of multiple crossing of control characteristics of the DC system configurations, with results verified through software simulation in MATLAB/Simulink using an open access toolbox. Results show that in operating conditions of 650 V and 50 A (DC voltage and DC current), drifts of 7.7% in the DC voltage and of 10% in the DC current occur due to adverse control interactions under the current versus voltage droop and power control scheme. Similarly, drifts of 7.7% both in the DC voltage and power occur under the power versus voltage droop and current control scheme.This work was supported by the EU FP7 program, through the project “BEyond State of the art Technologies for re-Powering AC corridors and multi-Terminal HVDC Systems” (BEST-PATHS), grant agreement 612748. The simulation toolbox can be downloaded from the project website at www.bestpaths-project.eu (accessed on 10 December 2021)
    • 

    corecore