269 research outputs found

    Graph Reasoning Transformer for Image Parsing

    Full text link
    Capturing the long-range dependencies has empirically proven to be effective on a wide range of computer vision tasks. The progressive advances on this topic have been made through the employment of the transformer framework with the help of the multi-head attention mechanism. However, the attention-based image patch interaction potentially suffers from problems of redundant interactions of intra-class patches and unoriented interactions of inter-class patches. In this paper, we propose a novel Graph Reasoning Transformer (GReaT) for image parsing to enable image patches to interact following a relation reasoning pattern. Specifically, the linearly embedded image patches are first projected into the graph space, where each node represents the implicit visual center for a cluster of image patches and each edge reflects the relation weight between two adjacent nodes. After that, global relation reasoning is performed on this graph accordingly. Finally, all nodes including the relation information are mapped back into the original space for subsequent processes. Compared to the conventional transformer, GReaT has higher interaction efficiency and a more purposeful interaction pattern. Experiments are carried out on the challenging Cityscapes and ADE20K datasets. Results show that GReaT achieves consistent performance gains with slight computational overheads on the state-of-the-art transformer baselines.Comment: Accepted in ACM MM202

    Accurate and Efficient Stereo Matching via Attention Concatenation Volume

    Full text link
    Stereo matching is a fundamental building block for many vision and robotics applications. An informative and concise cost volume representation is vital for stereo matching of high accuracy and efficiency. In this paper, we present a novel cost volume construction method, named attention concatenation volume (ACV), which generates attention weights from correlation clues to suppress redundant information and enhance matching-related information in the concatenation volume. The ACV can be seamlessly embedded into most stereo matching networks, the resulting networks can use a more lightweight aggregation network and meanwhile achieve higher accuracy. We further design a fast version of ACV to enable real-time performance, named Fast-ACV, which generates high likelihood disparity hypotheses and the corresponding attention weights from low-resolution correlation clues to significantly reduce computational and memory cost and meanwhile maintain a satisfactory accuracy. The core idea of our Fast-ACV is volume attention propagation (VAP) which can automatically select accurate correlation values from an upsampled correlation volume and propagate these accurate values to the surroundings pixels with ambiguous correlation clues. Furthermore, we design a highly accurate network ACVNet and a real-time network Fast-ACVNet based on our ACV and Fast-ACV respectively, which achieve the state-of-the-art performance on several benchmarks (i.e., our ACVNet ranks the 2nd on KITTI 2015 and Scene Flow, and the 3rd on KITTI 2012 and ETH3D among all the published methods; our Fast-ACVNet outperforms almost all state-of-the-art real-time methods on Scene Flow, KITTI 2012 and 2015 and meanwhile has better generalization ability)Comment: Accepted to TPAMI 2023. arXiv admin note: substantial text overlap with arXiv:2203.0214

    Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China craton

    Get PDF
    The origin of giant lode gold deposits of Mesozoic age in the North China craton (NCC) is enigmatic because high-grade metamorphic ancient crust would be highly depleted in gold. Instead, lithospheric mantle beneath the crust is the likely source of the gold, which may have been anomalously enriched by metasomatic processes. However, the role of gold enrichment and metasomatism in the lithospheric mantle remains unclear. Here, we present comprehensive data on gold and platinum group element contents of mantle xenoliths (n = 28) and basalts (n = 47) representing the temporal evolution of the eastern NCC. The results indicate that extensive mantle metasomatism and hydration introduced some gold (<1–2 ppb) but did not lead to a gold-enriched mantle. However, volatile-rich basalts formed mainly from the metasomatized lithospheric mantle display noticeably elevated gold contents as compared to those from the asthenosphere. Combined with the significant inheritance of mantle-derived volatiles in auriferous fluids of ore bodies, the new data reveal that the mechanism for the formation of the lode gold deposits was related to the volatile-rich components that accumulated during metasomatism and facilitated the release of gold during extensional craton destruction and mantle melting. Gold-bearing, hydrous magmas ascended rapidly along translithospheric fault zones and evolved auriferous fluids to form the giant deposits in the crust

    Image Formation Model Guided Deep Image Super-Resolution

    Full text link
    We present a simple and effective image super-resolution algorithm that imposes an image formation constraint on the deep neural networks via pixel substitution. The proposed algorithm first uses a deep neural network to estimate intermediate high-resolution images, blurs the intermediate images using known blur kernels, and then substitutes values of the pixels at the un-decimated positions with those of the corresponding pixels from the low-resolution images. The output of the pixel substitution process strictly satisfies the image formation model and is further refined by the same deep neural network in a cascaded manner. The proposed framework is trained in an end-to-end fashion and can work with existing feed-forward deep neural networks for super-resolution and converges fast in practice. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods.Comment: AAAI 2020. The training code and models are available at https://github.com/jspan/PHYSICS S

    Mid-infrared Spectral Compression of Soliton Pulse in an Adiabatically Suspended Silicon Waveguide Taper

    Get PDF
    Spectral compression (SPC) can be used for generating narrow bandwidth and wavelength-tunable light sources, which have important applications in optical communication system, spectroscopy, and nonlinear microscopy. In this paper, we numerically demonstrate the high-degree SPC of the chirp-free femtosecond pulse at wavelength 2.4 μm in a 6-cm long adiabatically suspended silicon waveguide taper. The silicon waveguide taper is designed with a dispersion-increasing profile along the propagation distance z. Simulation results show that the SPC factor can be up to 10.9, along with the brightness-enhanced factor of 8.0 and negligible sidelobe. The impacts of the higher-order dispersion, higher-order nonlinearity, losses (including linear and nonlinear loss), and variation of Kerr nonlinear coefficient along z on the SPC are also investigated. It is found that variation of Kerr nonlinear coefficient γ(z) and linear loss are the dominant perturbation to the degradation of the SPC performance

    Self-similar Pcosecond Pulse Compression for Supercontinuum Generation at Mid-infrared Wavelength in Silicon Strip Waveguides

    Get PDF
    Self-similar pulse compression has important application in highly coherent supercontinuum (SC) generation. In this paper, we numerically present the mid-infrared self-similar picosecond pulse compression in a tapered suspended silicon strip waveguide, which is designed with exponentially decreasing dispersion profile along the direction of propagation. When the variation of the Kerr nonlinear coefficient ��(z), linear and nonlinear losses, higher-order nonlinearity, and higher-order dispersion are taken into consideration, the simulation result shows that a 1 ps input pulse centered at wavelength 2.8 μm could be self-similarly compressed to 47.06 fs in a 3.9-cm waveguide taper, along with a compression factor ��c of 21.25, quality factor ��c of 0.78, and negligible pedestal. After that, the compressed pulse is launched into a uniform silicon strip waveguide, which is used for the generation of SC. We numerically demonstrate that the coherence of the generated SC by the compressed pulse can be significantly improved when compared to that generated directly by the picosecond pulse. The simulation results can be used to realize on-chip mid-infrared femtosecond light source and highly coherent supercontinuum, which can promote the development of on-chip nonlinear optic

    Long-term exposure to PM\u3csub\u3e2.5\u3c/sub\u3e and incidence of disability in activities of daily living among oldest old

    Get PDF
    Currently the Chinese government has adopted World Health Organization interim target-1 values as the national ambient air quality standards values. However, the population-based evidence was insufficient, especially for the oldest old (aged 80+). We evaluated the association of fine particulate matters (PM2.5) exposure and incidence of disability in activities of daily living (ADL) in 15 453 oldest old in 886 counties/cities in China from 2002 to 2014 using Cox model with penalized splines and competing risk models to evaluate the linear or non-linear association. After adjusting for potential confounders, a J-shaped association existed between PM2.5 exposure with a threshold concentration of 33 μg/m3, and incident disability in ADL. Above this threshold, the risk magnitude significantly increased with increase of PM2.5 concentrations; compared to 33 μg/m3, the hazard ratio ranged from 1.03 (1.00–1.06) at 40 μg/m3 to 2.25 (1.54–3.29) at 110 μg/m3. The risk magnitude was not significantly changed below this threshold. Each 10 μg/m3 increase in PM2.5 exposure corresponded to a 7.7% increase in the risk of disability in ADL (hazard ratio 1.077, 95% CI 1.051–1.104). Men, smokers, and participants with cognitive impairment might be more vulnerable to PM2.5 exposure. The study provided limited population-based evidence for the oldest old and detected a threshold of 33 μg/m3, and supported that reduction to current World Health Organization interim target-1value (35 μg/m3) and Chinese national ambient air quality standards (35 μg/m3) or lower may be associated with lower risk of disability in ADL

    Elevated MPP6 expression correlates with an unfavorable prognosis, angiogenesis and immune evasion in hepatocellular carcinoma

    Get PDF
    BackgroundMembrane palmitoylated proteins (MPPs) are engaged in various biological processes, such as cell adhesion and cell polarity. Dysregulated MPP members have different effects on hepatocellular carcinoma (HCC) development. However, the role of MPP6 in HCC has been unknown.MethodHCC transcriptome and clinical data from different public databases were downloaded and analyzed, and the results were further validated by qRT−PCR, Western blotting and immunohistochemistry (IHC) using HCC cell lines and tissues. The association between MPP6 and prognosis, potential pathogenic mechanisms, angiogenesis, immune evasion, tumor mutation burden (TMB) and treatment response in HCC patients was analyzed by bioinformatics and IHC staining.ResultsMPP6 was significantly overexpressed in HCC, and its expression was related to T stage, pathologic stage, histologic grade and adverse prognosis in HCC patients. Gene set enrichment analysis revealed that differentially expressed genes were mainly enriched in the synthesis of genetic materials and the WNT signaling pathway. GEPIA database analysis and IHC staining suggested that MPP6 expression had a positive correlation with angiogenesis. Single-cell dataset analysis indicated that MPP6 was associated with features of the tumor microenvironment. Additional analyses discovered that MPP6 expression was inversely related to immune cell infiltration and was involved in tumor immune evasion. MPP6 expression was positively associated with TMB, and patients with high TMB had an adverse prognosis. Immunotherapy was more effective in HCC patients with low MPP6 expression, whereas those with high MPP6 expression responded better to sorafenib, gemcitabine, 5-FU, and doxorubicin.ConclusionsElevated MPP6 expression is associated with an unfavorable prognosis, angiogenesis and immune evasion in HCC. Moreover, MPP6 has the potential to be used to assess TMB and treatment response. Therefore, MPP6 might serve as a novel prognostic biomarker and therapeutic target for HCC
    corecore