102 research outputs found

    Design and Optimization of the Power Management Strategy of an Electric Drive Tracked Vehicle

    Get PDF
    This article studies the power management control strategy of electric drive system and, in particular, improves the fuel economy for electric drive tracked vehicles. Combined with theoretical analysis and experimental data, real-time control oriented models of electric drive system are established. Taking into account the workloads of engine and the SOC (state of charge) of battery, a fuzzy logic based power management control strategy is proposed. In order to achieve a further improvement in fuel economic, a DEHPSO algorithm (differential evolution based hybrid particle swarm optimization) is adopted to optimize the membership functions of fuzzy controller. Finally, to verify the validity of control strategy, a HILS (hardware-in-the-loop simulation) platform is built based on dSPACE and related experiments are carried out. The results indicate that the proposed strategy obtained good effects on power management, which achieves high working efficiency and power output capacity. Optimized by DEHPSO algorithm, fuel consumption of the system is decreased by 4.88% and the fuel economy is obviously improved, which will offer an effective way to improve integrated performance of electric drive tracked vehicles

    The Application of Three-Dimensional Collagen-Scaffolds Seeded with Myoblasts to Repair Skeletal Muscle Defects

    Get PDF
    Three-dimensional (3D) engineered tissue constructs are a novel and promising approach to tissue repair and regeneration. 3D tissue constructs have the ability to restore form and function to damaged soft tissue unlike previous methods, such as plastic surgery, which are able to restore only form, leaving the function of the soft tissue often compromised. In this study, we seeded murine myoblasts (C2C12) into a collagen composite scaffold and cultured the scaffold in a roller bottle cell culture system in order to create a 3D tissue graft in vitro. The 3D graft created in vitro was then utilized to investigate muscle tissue repair in vivo. The 3D muscle grafts were implanted into defect sites created in the skeletal muscles in mice. We detected that the scaffolds degraded slowly over time, and muscle healing was improved which was shown by an increased quantity of innervated and vascularized regenerated muscle fibers. Our results suggest that the collagen composite scaffold seeded with myoblasts can create a 3D muscle graft in vitro that can be employed for defect muscle tissue repair in vivo

    User-centric C-RAN Architecture for Ultra-dense 5G Networks: Challenges and Methodologies

    Get PDF
    Ultra-dense networks (UDN) constitute one of the most promising techniques of supporting the fifth generation (5G) mobile system. By deploying more small cells in a fixed area, the average distance between users and access points can be significantly reduced, hence a dense spatial frequency reuse can be exploited. However, severe interference is the major obstacle in UDNs. Most of the contributions investigate the interference by designing distributed algorithms based on cooperative game theory. This paper advocates the application of dense user-centric cloud radio access network (CRAN) philosophy to UDNs, thanks to the recent development of cloud computing techniques. Under dense C-RAN architectures, centralized signal processing can be invoked for supporting Coordinated Multiple Points Transmission/Reception (CoMP). We summarize the main challenges in dense usercentric C-RANs. One of the most challenging issues is the requirement of the global CSI for the sake of cooperative transmission. We investigate this requirement by only relying on partial channel state information (CSI), namely, on inter-cluster large-scale CSI. Furthermore, the estimation of the intracluster CSI is considered, including the pilot allocation and robust transmission. Finally, we highlight several promising research directions to make the dense user-centric C-RAN become a reality, with special emphasis on the application of the ‘big data’ techniques

    A Renal Cell Carcinoma with Biallelic Somatic TSC2 Mutation: Clinical Study and Literature Review.

    Get PDF
    OBJECTIVES: To elucidate the effect of the biallelic somatic TSC2 mutations, identified in one adolescent patient, in renal cell carcinoma (RCC). METHODS: Mutation analyses, immunohistochemistry and real-time polymerase chain reaction (PCR) were conducted. RESULTS: Two novel somatic mutations of TSC2 in unilateral and solitary RCC samples from a 14-year-old female were identified. The pathological features suggest the tumor as a clear-cell renal cell carcinoma. In addition, immunohistochemistry revealed elevated levels of phosphorylated S6K1. Results from in vitro cellular experiments suggest that the mutant TSC2 proteins were quickly degraded and they failed to repress the phosphorylation of S6K1 and STAT3, which leads to constitutive activation of mTORC1 pathway and ultimately cause the development of RCC. CONCLUSIONS: Detecting TSC2 mutation in patients with early RCC onset would be beneficial and mTOR inhibitor could be a therapeutic option for TSC2 mutation-induced RCC

    Safety and Immunogenicity of a Malaria Vaccine, Plasmodium falciparum AMA-1/MSP-1 Chimeric Protein Formulated in Montanide ISA 720 in Healthy Adults

    Get PDF
    The P. falciparum chimeric protein 2.9 (PfCP-2.9) consisting of the sequences of MSP1-19 and AMA-1 (III) is a malaria vaccine candidate that was found to induce inhibitory antibodies in rabbits and monkeys. This was a phase I randomized, single-blind, placebo-controlled, dose-escalation study to evaluate the safety and immunogenicity of the PfCP-2.9 formulated with a novel adjuvant Montanide ISA720. Fifty-two subjects were randomly assigned to 4 dose groups of 10 participants, each receiving the test vaccine of 20, 50, 100, or 200 µg respectively, and 1 placebo group of 12 participants receiving the adjuvant only.The vaccine formulation was shown to be safe and well-tolerated, and none of the participants withdrew. The total incidence of local adverse events (AEs) was 75%, distributed among 58% of the placebo group and 80% of those vaccinated. Among the vaccinated, 65% had events that were mild and 15% experienced moderate AEs. Almost all systemic adverse reactions observed in this study were graded as mild and required no therapy. The participants receiving the test vaccine developed detectable antibody responses which were boosted by the repeated vaccinations. Sixty percent of the vaccinated participants had high ELISA titers (>1∶10,000) of antigen-specific antibodies which could also recognize native parasite proteins in an immunofluorescence assay (IFA).This study is the first clinical trial for this candidate and builds on previous investigations supporting PfCP-2.9/ISA720 as a promising blood-stage malaria vaccine. Results demonstrate safety, tolerability (particularly at the lower doses tested) and immunogenicity of the formulation. Further clinical development is ongoing to explore optimizing the dose and schedule of the formulation to decrease reactogenicity without compromising immunogenicity.

    Novel Evolved Immunoglobulin (Ig)-Binding Molecules Enhance the Detection of IgM against Hepatitis C Virus

    Get PDF
    Detection of specific antibodies against hepatitis C virus (HCV) is the most widely available test for viral diagnosis and monitoring of HCV infections. However, narrowing the serologic window of anti-HCV detection by enhancing anti-HCV IgM detection has remained to be a problem. Herein, we used LD5, a novel evolved immunoglobulin-binding molecule (NEIBM) with a high affinity for IgM, to develop a new anti-HCV enzyme-linked immunosorbent assay (ELISA) using horseradish peroxidase-labeled LD5 (HRP-LD5) as the conjugated enzyme complex. The HRP-LD5 assay showed detection efficacy that is comparable with two kinds of domestic diagnostic kits and the Abbott 3.0 kit when tested against the national reference panel. Moreover, the HRP-LD5 assay showed a higher detection rate (55.9%, 95% confidence intervals (95% CI) 0.489, 0.629) than that of a domestic diagnostic ELISA kit (Chang Zheng) (53.3%, 95% CI 0.463, 0.603) in 195 hemodialysis patient serum samples. Five serum samples that were positive using the HRP-LD5 assay and negative with the conventional anti-HCV diagnostic ELISA kits were all positive for HCV RNA, and 4 of them had detectable antibodies when tested with the established anti-HCV IgM assay. An IgM confirmation study revealed the IgM reaction nature of these five serum samples. These results demonstrate that HRP-LD5 improved anti-HCV detection by enhancing the detection of anti-HCV IgM, which may have potential value for the early diagnosis and screening of hepatitis C and other infectious diseases

    Synthesis of Fmoc-3-(N-ethyl-3-carbazolyl)-L-alanine and Its Incorporation into a Cyclic Peptide

    Get PDF
    Ghadiri reported the first synthetic peptide nanotubue in 1993, which has triggered extensive studies on peptide-based nanotubes and their potential application in molecular wires, catalysts and novel drug delivery vehicles. Our concerns focus on chromophore-modified cyclic peptides, which open a new way to design and synthesize novel nanoscale electronic or photonic devices, and are expected to provide the highly efficient electron and energy transfer that such devices require. This research concerned the design and synthesis of chiral a-amino acids with specific chromophores, including N-ethyl-3-carbazolylalanine and 9-anthrylalanine, and an 8-mer linear peptide (H-Aib-Car-Aib-Phe-Aib-Bpa-Aib-Phe-OH) and its corresponding cyclic peptide cyclo(Aib-Car-Aib-Phe-Aib-Bpa-Aib-Phe) that incorporate the N-ethyl-3-carbazolylalanine. This thesis describes the relevant background, synthetic strategies, experiments and results in detail. The carbazole derivatives were found to be very labile to strong acid, which might have caused self-condensation. In order to avoid the formation of acid-derived side-products, the Wittig-Horner reaction was used successfully in preparation of N-protected-3-(N¡¯-ethyl-3-carbazolyl)-DL-alanine methyl ester. Dual enzymatic hydrolyses were developed to produce the chiral amino acids with high enantiomeric excess. ChiroCLEC-BL was used to selectively hydrolyze the N-acetyl-L-amino acid methyl ester, while amanoacylase was adopted to remove the acetyl group from the resulting N-acetyl-L-amino acid. Two model peptides were synthesized, a 4-mer peptide (H-Car-D-Ala-Bpa-D-Ala-OH) via the Boc-strategy, and an 8-mer peptide (H-Ala-D-Ala-Npa-D-MeAla-Ala-D-Ala-Bpa-D-Ala-OH) by the Fmoc-strategy. Eventually, the target linear peptide was synthesized via the Fmoc-strategy and then cyclized in solution

    Similarity Criterion of Freezing Model Test considering Nonlinear Variation of Thermal Parameters with Temperature

    No full text
    The significant differences in specific heat and thermal conductivity of ice and water lead to the changes of specific heat and thermal conductivity of soil during the freezing process. This makes it hard for the temperature field similarity criterion based on constant thermal parameters to accurately reflect the temperature field evolution of soil mass caused by nonlinearity of thermal parameters in the process. Based on heat conduction differential equation considering nonlinear changes of thermal parameters, this paper uses similarity transformation method to derive the similarity criterion of the temperature field in the frozen soil model test and arrives at the conclusion that the prototype soil and model soil should meet when the original soil is used for the model test. At the same time, given the impact of the third boundary condition on the similarity criterion, the thermal physical similarity conditions for the model soil are derived. On this basis, ABAQUS finite element software is used to numerically simulate the linear and nonlinear prototype and model temperature fields. The third boundary condition considered the temperature evolution of the characteristic points during the freezing process is analyzed. The calculation results indicate that the nonlinear thermal conductivity similarity criterion established herein can correctly reflect the evolution process of the prototype frozen soil temperature field. It is also suggested that the model soil thermal parameters are reasonably calculated. At the same time, it shows that the nonlinear freezing similarity criterion of the soil, when the third boundary condition is satisfied, has clear physical meaning and higher practical value. The research results provide a practical and reasonable parameter calculation method for the model soil preparation in the frozen soil model test and a theoretical basis and technical support for the design and implementation of the water-heat-force coupling model test on frozen soil
    corecore