44 research outputs found
Gut dysbiosis contributes to chlamydial induction of hydrosalpinx in the upper genital tract
Chlamydia trachomatis is one of the most common sexually infections that cause infertility, and its genital infection induces tubal adhesion and hydrosalpinx. Intravaginal Chlamydia muridarum infection in mice can induce hydrosalpinx in the upper genital tract and it has been used for studying C. trachomatis pathogenicity. DBA2/J strain mice were known to be resistant to the chlamydial induction of hydrosalpinx. In this study, we took advantage of this feature of DBA2/J mice to evaluate the role of antibiotic induced dysbiosis in chlamydial pathogenicity. Antibiotics (vancomycin and gentamicin) were orally administrated to induce dysbiosis in the gut of DBA2/J mice. The mice with or without antibiotic treatment were evaluated for gut and genital dysbiosis and then intravaginally challenged by C. muridarum. Chlamydial burden was tested and genital pathologies were evaluated. We found that oral antibiotics significantly enhanced chlamydial induction of genital hydrosalpinx. And the antibiotic treatment induced severe dysbiosis in the GI tract, including significantly reduced fecal DNA and increased ratios of firmicutes over bacteroidetes. The oral antibiotic did not alter chlamydial infection or microbiota in the mouse genital tracts. Our study showed that the oral antibiotics-enhanced hydrosalpinx correlated with dysbiosis in gut, providing the evidence for associating gut microbiome with chlamydial genital pathogenicity
Intestinal Absorption and First-Pass Metabolism of Polyphenol Compounds in Rat and Their Transport Dynamics in Caco-2 Cells
<div><h3>Background</h3><p>Polyphenols, a group of complex naturally occurring compounds, are widely distributed throughout the plant kingdom and are therefore readily consumed by humans. The relationship between their chemical structure and intestinal absorption, transport, and first-pass metabolism remains unresolved, however.</p> <h3>Methods</h3><p>Here, we investigated the intestinal absorption and first-pass metabolism of four polyphenol compounds, apigenin, resveratrol, emodin and chrysophanol, using the <em>in vitro</em> Caco-2 cell monolayer model system and <em>in situ</em> intestinal perfusion and <em>in vivo</em> pharmacokinetic studies in rats, so as to better understand the relationship between the chemical structure and biological fate of the dietary polyphenols.</p> <h3>Conclusion</h3><p>After oral administration, emodin and chrysophanol exhibited different absorptive and metabolic behaviours compared to apigenin and resveratrol. The differences in their chemical structures presumably resulted in differing affinities for drug-metabolizing enzymes, such as glucuronidase and sulphatase, and transporters, such as MRP2, SGLT1, and P-glycoprotein, which are found in intestinal epithelial cells.</p> </div
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Spatial distribution of mineral development in Carboniferous Bowland Shale, UK at 3D micro- to nano- scales
Determination of mineral texture and diagenetic features in mudstones is crucial to reveal the history of their pore systems and provides key information to predict their future sealing ability, reactivity and storage capacity for sequestered CO 2, hydrogen storage or nuclear waste disposal. To understand the spatial transport and storage of fluids, it is necessary to map the distribution of minerals and fractures in three dimensions (3D). This study proposes a novel, multi-scale three-dimensional (3D) imaging method, i.e., a combination of synchrotron- sourced micro- x-ray tomography and lab- sourced nano-tomography, to investigate the sedimentology and diagenetic features of the Bowland Shale, one of the most volumetrically important mudstone-dominated systems in the UK. Diagenetic minerals have been identified and characterised, including pyrite, calcite, kaolinite, illite, chlorite, dolomite, ankerite and authigenic quartz (micro-sized quartz and quartz overgrowths). Multi-scale 3D images provide detailed information about dolomite-ankerite zonation and carbonate dissolution pores. These features cannot be observed or quantified by conventional 2D methods, and they have not been reported in this subject area before. Using these results, potential reactions during carbon storage and other subsurface storage applications are predicted.</p
Chronic immune thrombocytopenia in a child with X-linked agammaglobulinemia-an uncommon phenotype
Autoimmune disorders are common in patients with primary immunodeficiency diseases (PIDs). However, the prevalence of autoimmunity is low in patients with X-linked agammaglobulinemia (XLA), mostly due to the absence of antibodies. Chronic or persistent immune thrombocytopenia (ITP), which is usually considered an antibody-mediated disease, is uncommon in patients with XLA. In this study, we detailly described a surprising autoimmune phenomenon, chronic ITP, in a small boy diagnosed with XLA. This is an interesting phenotype found in XLA, and it is helpful to understand the immune pathogenesis of autoimmunity in patients with XLA