207 research outputs found

    Consumption and savings of migrants in China – social cohesion perspective

    Get PDF
    Boosting domestic demand is the task of China’s sustainable economic development, and in particular, China has become an important global consumer market and the savings patterns should be more cohesive and without discriminations. Using data of China Migrants Dynamic Survey, the paper provides new evidence on internal migrants’ savings in China from the perspective of homeownership and family migration. We find that migrants’ savings are 5.25–6.60 percentage points higher than hukou population even when controlling for working, social status, and social insurance coverage which means the migrant will save 1019.88–1647.10 yuan in 2010 price more monthly. Furthermore, we discover housing could partly explain the saving gap, while when we take remittance and family migration into account, the saving rate differences between migrants and hukou population disappears, which means migrants may save to consume when they go back to their hometown with their family members instead of consuming later in the resident cities. The research is carried out taking into account the objectives of social cohesion policy identified at national and international level and their involvement in consumption and saving processes. Our empirical results reveal that homeownership, remittance motive and family migration play important roles in shaping saving behaviour of migrants

    Double-layered hyaluronic acid/stearic acid-modified polyethyleneimine nanoparticles encapsulating (-)-gossypol: a nanocarrier for chiral anticancer drugs

    Get PDF
    This study aimed to enhance the water solubility and antitumor efficacy of (-)-gossypol. Polyethyleneimine conjugated with stearic acid (PgS) was used for loading and protecting (-)-gossypol through hydrogen bonding. Double-layered hyaluronic acid (HA)-modified PgS nanoparticles encapsulating (-)-gossypol [(-)-G-PgSHAs] were prepared through a two-step fabrication process. The nanoparticles possessed a uniform spherical shape with a dynamic size of 110.9 ± 2.4 nm, which was determined through transmission electron microscopy and dynamic light scattering analysis. The encapsulation efficiency and drug-loading capacity of (-)-G-PgSHAs were 72.6% ± 3.1% and 9.1% ± 0.42%, respectively. The IR spectra of the samples confirmed the protection effect of hydrogen bonding on the optical activity of the encapsulated (-)-gossypol. (-)-G-PgSHAs exhibited a controlled and tumor-specific release because of the high expression of HAase in the tumor region. The tumor-targeting feature of PgSHAs due to HA-receptor mediation was confirmed by in vitro cell uptake and in vivo near infrared fluorescence imaging. The in vitro test showed that the (-)-G-PgSHAs had similar cytotoxicity to free (-)-gossypol and was smaller than that of the encapsulated (±)-gossypol [(±)-G-PgSHAs]. The in vivo study of the anti-cancer effect of (-)-G-PgSHAs revealed that (-)-G-PgSHAs had a more enhanced tumor-suppression effect and reduced systemic toxicity compared with free (-)-gossypol and (±)-G-PgSHAs (P < 0.05). Therefore, PgSHA was a useful (-)-gossypol nanocarrier that exhibits high biocompatibility, tunable release of drug, and tumor-targeting characteristics for cancer treatment. In addition, this double-layered nanocarrier provided novel strategies for the encapsulation of other chiral drugs

    Diagnosis-guided method for identifying multi-modality neuroimaging biomarkers associated with genetic risk factors in Alzheimer’s disease

    Get PDF
    Many recent imaging genetic studies focus on detecting the associations between genetic markers such as single nucleotide polymorphisms (SNPs) and quantitative traits (QTs). Although there exist a large number of generalized multivariate regression analysis methods, few of them have used diagnosis information in subjects to enhance the analysis performance. In addition, few of models have investigated the identification of multi-modality phenotypic patterns associated with interesting genotype groups in traditional methods. To reveal disease-relevant imaging genetic associations, we propose a novel diagnosis-guided multi-modality (DGMM) framework to discover multi-modality imaging QTs that are associated with both Alzheimer's disease (AD) and its top genetic risk factor (i.e., APOE SNP rs429358). The strength of our proposed method is that it explicitly models the priori diagnosis information among subjects in the objective function for selecting the disease-relevant and robust multi-modality QTs associated with the SNP. We evaluate our method on two modalities of imaging phenotypes, i.e., those extracted from structural magnetic resonance imaging (MRI) data and fluorodeoxyglucose positron emission tomography (FDG-PET) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results demonstrate that our proposed method not only achieves better performances under the metrics of root mean squared error and correlation coefficient but also can identify common informative regions of interests (ROIs) across multiple modalities to guide the disease-induced biological interpretation, compared with other reference methods

    Identifying Multimodal Intermediate Phenotypes between Genetic Risk Factors and Disease Status in Alzheimer’s Disease

    Get PDF
    Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer’s disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation

    Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis

    Get PDF
    Motivation: Neuroimaging genetics identifies the relationships between genetic variants (i.e., the single nucleotide polymorphisms) and brain imaging data to reveal the associations from genotypes to phenotypes. So far, most existing machine-learning approaches are widely used to detect the effective associations between genetic variants and brain imaging data at one time-point. However, those associations are based on static phenotypes and ignore the temporal dynamics of the phenotypical changes. The phenotypes across multiple time-points may exhibit temporal patterns that can be used to facilitate the understanding of the degenerative process. In this article, we propose a novel temporally constrained group sparse canonical correlation analysis (TGSCCA) framework to identify genetic associations with longitudinal phenotypic markers. Results: The proposed TGSCCA method is able to capture the temporal changes in brain from longitudinal phenotypes by incorporating the fused penalty, which requires that the differences between two consecutive canonical weight vectors from adjacent time-points should be small. A new efficient optimization algorithm is designed to solve the objective function. Furthermore, we demonstrate the effectiveness of our algorithm on both synthetic and real data (i.e., the Alzheimer’s Disease Neuroimaging Initiative cohort, including progressive mild cognitive impairment, stable MCI and Normal Control participants). In comparison with conventional SCCA, our proposed method can achieve strong associations and discover phenotypic biomarkers across multiple time-points to guide disease-progressive interpretation

    Fatigue Detection for Ship OOWs Based on Input Data Features, from The Perspective of Comparison with Vehicle Drivers: A Review

    Get PDF
    Ninety percent of the world’s cargo is transported by sea, and the fatigue of ship officers of the watch (OOWs) contributes significantly to maritime accidents. The fatigue detection of ship OOWs is more difficult than that of vehicles drivers owing to an increase in the automation degree. In this study, research progress pertaining to fatigue detection in OOWs is comprehensively analysed based on a comparison with that in vehicle drivers. Fatigue detection techniques for OOWs are organised based on input sources, which include the physiological/behavioural features of OOWs, vehicle/ship features, and their comprehensive features. Prerequisites for detecting fatigue in OOWs are summarised. Subsequently, various input features applicable and existing applications to the fatigue detection of OOWs are proposed, and their limitations are analysed. The results show that the reliability of the acquired feature data is insufficient for detecting fatigue in OOWs, as well as a non-negligible invasive effect on OOWs. Hence, low-invasive physiological information pertaining to the OOWs, behaviour videos, and multisource feature data of ship characteristics should be used as inputs in future studies to realise quantitative, accurate, and real-time fatigue detections in OOWs on actual ships

    BeamSearchQA: Large Language Models are Strong Zero-Shot QA Solver

    Full text link
    Open-domain question answering is a crucial task that often requires accessing external information. Existing methods typically adopt a single-turn retrieve-then-read approach, where relevant documents are first retrieved, and questions are then answered based on the retrieved information. However, there are cases where answering a question requires implicit knowledge that is not directly retrievable from the question itself. In this work, we propose a novel question-answering pipeline called BeamSearchQA. Our approach leverages large language models to iteratively generate new questions about the original question, enabling an iterative reasoning process. By iteratively refining and expanding the scope of the question, our method aims to capture and utilize hidden knowledge that may not be directly obtainable through retrieval. We evaluate our approach on the widely-used open-domain NQ and WebQ datasets. The experimental results demonstrate that BeamSearchQA significantly outperforms other zero-shot baselines, indicating its effectiveness in tackling the challenges of open-domain question answering.Comment: Work in progres

    LEAD: Liberal Feature-based Distillation for Dense Retrieval

    Full text link
    Knowledge distillation is often used to transfer knowledge from a strong teacher model to a relatively weak student model. Traditional knowledge distillation methods include response-based methods and feature-based methods. Response-based methods are used the most widely but suffer from lower upper limit of model performance, while feature-based methods have constraints on the vocabularies and tokenizers. In this paper, we propose a tokenizer-free method liberal feature-based distillation (LEAD). LEAD aligns the distribution between teacher model and student model, which is effective, extendable, portable and has no requirements on vocabularies, tokenizer, or model architecture. Extensive experiments show the effectiveness of LEAD on several widely-used benchmarks, including MS MARCO Passage, TREC Passage 19, TREC Passage 20, MS MARCO Document, TREC Document 19 and TREC Document 20.Comment: Work in progres

    Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease

    Get PDF
    Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene APOE, imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding
    • …
    corecore