21 research outputs found

    Coil-Agnostic Attention-Based Network for Parallel MRI Reconstruction

    Get PDF

    Transcriptome Analyses Reveal Effects of Vitamin C-Treated Donor Cells on Cloned Bovine Embryo Development

    No full text
    Somatic cell nuclear transfer (SCNT) is a very powerful technique used to produce genetically identical or modified animals. However, the cloning efficiency in mammals remains low. In this study, we aimed to explore the effects of vitamin C (Vc)-treated donor cells on cloned embryos. As a result, Vc treatment relaxed the chromatin of donor cells and improved cloned embryo development. RNA sequencing was adopted to investigate the changes in the transcriptional profiles in early embryos. We found that Vc treatment increased the expression of genes involved in the cell–substrate adherens junction. Gene ontology (GO) analysis revealed that Vc treatment facilitated the activation of autophagy, which was deficient in cloned two-cell embryos. Rapamycin, an effective autophagy activator, increased the formation of cloned blastocysts (36.0% vs. 25.6%, p < 0.05). Abnormal expression of some coding genes and long non-coding RNAs in cloned embryos was restored by Vc treatment, including the zinc-finger protein 641 (ZNF641). ZNF641 compensation by means of mRNA microinjection improved the developmental potential of cloned embryos. Moreover, Vc treatment rescued some deficient RNA-editing sites in cloned two-cell embryos. Collectively, Vc-treated donor cells improved the development of the cloned embryo by affecting embryonic transcription. This study provided useful resources for future work to promote the reprogramming process in SCNT embryos

    Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

    No full text
    A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation product of isopropanol, respectively. NaTaO3 nanocubes loaded with 2 wt % CuO and synthesized in 2 mol/L NaOH solution showed the best activity. The methanol and acetone yields were 137.48 ÎŒmol/(g·h) and 335.93 ÎŒmol/(g·h), respectively, after 6 h of irradiation. Such high activity could be attributed to the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory

    Facile Synthesis of CeO2-LaFeO3 Perovskite Composite and Its Application for 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone (NNK) Degradation

    No full text
    A facile and environmentally friendly surface-ion adsorption method using CeCO3OH@C as template was demonstrated to synthesize CeO2-LaFeO3 perovskite composite material. The obtained composite was characterized by X-ray diffraction (XRD), fourier transform infrared spectra (FT-IR), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis and differential scanning calorimetry (TG-DSC), N2 adsorption/desorption isotherms and X-ray photoelectron spectra (XPS) measurements. The catalytic degradation of nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was tested to evaluate catalytic activity of the CeO2-LaFeO3 composite. Much better activity was observed for the CeO2-LaFeO3 composite comparing with CeO2 and LaFeO3. These results suggested that perovskite composite materials are a promising candidate for the degradation of tobacco-specific nitrosamines (TSNAs)

    Removal of Hexavalent Chromium by Electrospun Silicon Dioxide Nanofibers Embedded with Copper-Based Organic Frameworks

    No full text
    A novel adsorbent copper-based organic skeleton/silicon dioxide (HKUST-1/SiO2) composite nanofiber, which can effectively remove Cr (VI) under synergistic action, has been prepared by embedding growth technique. This adsorbent was characterized by embedded growth of HKUST-1 on inorganic SiO2 electrospun nanofibers, which can remove Cr (VI) in water with the help of adsorption and membrane separation under synergistic action. The results revealed that HKUST-1 was successfully embedded between the pores of SiO2 electrospun nanofibers. The factors affecting the adsorption performance of the composite nanofibers were studied, and the result displayed that the concentration of Cr (VI) solution was 120 mg/L, the best range for pH was 3~7, the adsorption equilibrium was about 45 min, and the maximum adsorption amount was 62.38 mg/g. Compared with the SiO2 fiber without HKUST-1 growth, the adsorptive property of the composite fiber was significantly increased by 15 mg/g. The adsorption process was spontaneous and belonged to the heat absorption reaction, which was consistent with Langmuir adsorption and the pseudo-second-order kinetic model. In addition, HKUST-1/SiO2 NFs can be used for the recovery of chromium resources because the HKUST-1/SiO2 NFs captured Cr (VI) can be calcined and recovered in the later stage, which reduces the consumption of desorption liquid, simplifies the recovery steps, and is conducive to energy saving and emission reduction. Therefore, HKUST-1/SiO2 NFs are expected to be applied in the field of hexavalent chromium wastewater purification and resource recovery
    corecore