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Region-Guided Channel-Wise Attention Network
for Accelerated MRI Reconstruction
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Abstract. Magnetic resonance imaging (MRI) has been widely used in
clinical practice for medical diagnosis of diseases. However, the long ac-
quisition time hinders its development in time-critical applications. In
recent years, deep learning-based methods leverage the powerful repre-
sentations of neural networks to recover high-quality MR images from
undersampled measurements, which shortens the acquisition process and
enables accelerated MRI scanning. Despite the achieved inspiring success,
it is still challenging to provide high-fidelity reconstructions under high
acceleration factors. As an important mechanism in deep neural net-
works, attention modules have been used to improve the reconstruction
quality. Due to the computational costs, many attention modules are not
suitable for applying to high-resolution features or to capture spatial in-
formation, which potentially limits the capacity of neural networks. To
address this issue, we propose a novel channel-wise attention which is
implemented under the guidance of implicitly learned spatial semantics.
We incorporate the proposed attention module in a deep network cas-
cade for fast MRI reconstruction. In experiments, we demonstrate that
the proposed framework produces superior reconstructions with appeal-
ing local visual details, compared to other deep learning-based models,
validated qualitatively and quantitatively on the FastMRI knee dataset.

Keywords: MRI reconstruction · Deep Learning · Region-guided channel-
wise attention.

1 Introduction

Magnetic resonance imaging (MRI) provides a powerful and non-invasive tool
for medical diagnosis. The acquisition process is notoriously time-consuming
due to physiological and hardware constraints. Undersampling k-space data is
a common practice to accelerate the process, which however inevitably causes
aliasing artifacts in image domain. The ill-posed problems can be modeled as,

min
x
‖Ax− y‖2 + λR(x), (1)

where A denotes the encoding operation, y is the k-space measurement, and
R(x) is a regularization on the reconstruction x. Compressed sensing (CS) meth-
ods assume the sparsity of signals in image domain [6] or in some transformed
space [11, 18, 22], and solve the optimization problem using iterative model-based
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algorithms. Nevertheless, it is challenging to hold the sparsity assumption in real
scenarios and remove the aliasing artifacts via conventional methods [28], which
restrains the growth of CS methods in modern MRI.

Recently, deep neural networks have been shown to perform favorably in
imaging tasks [15, 7, 26]. Incorporating the representations of neural networks
in MRI reconstruction shows superior performance in many works [29, 10]. The
method in [16] removes aliasing artifacts in MR images using dual magnitude and
phase networks. The method in [32] introduces a primal-dual network to solve
the traditional CS-MRI problem. However, the models trained with pixel-wise
losses, e.g. MSE, can fail to produce sharp and realistic local details and lead to
smoothed reconstructions. Generative adversarial networks (GAN) [8] exploit the
adversarial game between the generator and discriminator to implicitly model
the data distribution, and have been used to enhance the image quality of MRI
reconstructions [28, 30, 19]. However, GAN-based models can potentially produce
undesired details and fail to preserve faithful diagnostic features, by lacking of
k-space data consistency constraints. Concurrently, attention mechanism plays
an important role in vision tasks [33], which learns to capture feature depen-
dencies to enhance the model representation capacity. Many methods leverage
attention mechanism to improve MRI reconstruction quality [30]. Nevertheless,
the significantly increased computational overheads limit its implementations
to high-resolution features which are more closely associated with dense pre-
dictions, e.g. reconstruction tasks. Alternatively, channel-wise attention models
the inter-plays between feature channels efficiently and can potentially provide
better MRI reconstructions [13, 19, 17], whereas the spatial information is not
considered, limiting the representation capacity of attention over channels.

In this paper, we introduce a novel region-guided channel-wise attention net-
work for fast MRI reconstruction to exploit the channel-wise attention and im-
prove the reconstruction quality. It has been incorporated with the implicitly
learned spatial semantics to increase the attention diversities and gain perfor-
mance boost. To provide more accurate restoration, we leverage the k-space
consistency information in a densely connected network cascade and train the
model in an adversarial diet. The main contributions of our work can be sum-
marized as follows: 1) a novel region-guided channel-wise attention network for
MRI reconstruction, which introduces spatial information into channel attention
mechanism; 2) deriving the region-based semantic information to guide attention
over channels, which increases the attention diversity and achieves performance
gains; 3) by experiments, we demonstrate that the proposed method outperforms
other deep learning-based approaches qualitatively and quantitatively.

2 Methods

The proposed region-guided channel-wise attention network for MRI reconstruc-
tion endows channel-wise attention with spatial diversities to enhance the recon-
struction performance. We elaborate on the details as follows.
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Fig. 1: Illustration of (a) RG-CAM, (b) RDCB, and (c) undersampling.

2.1 Region-Guided Channel-Wise Attention Module (RG-CAM)

A novel region-guided channel-wise attention module (RG-CAM) is proposed
here to implicitly learn the spatial semantic information to guide the attention
mechanism over feature channels. As displayed in Fig. 1 (a), the input features
h ∈ RC×H×W , where C and H ×W denote the channel and spatial sizes, re-
spectively attend to the backbone and attention branches. The output features
ĥ from the backbone are refined using the output K from the attention branch.
The densely connected layers are used as the backbone for their effective rep-
resentations [12], which can be replaced by arbitrary structures. Owing to its
flexible design, RG-CAM can be easily combined with other network structures,
e.g. the spatial attention modules [33, 27, 17], to retrieve further improvements.
The details of RG-CAM are presented in the following.

Channel-Wise Attention Kernel Bank: The input h is squeezed via the global
average pooling (GAP) and pass it to a non-linear mapping comprising two linear
layers with a GELU activation in between, as shown in Fig. 1 (a). The output
is resized to be M × C × 1 × 1, representing M channel-wise attention kernels.
Each kernel, dubbed ai, is mapped to (0, 1) via a Sigmoid activation, where 1
means full attention to this channel and 0 denotes no attention. The kernels in
bank {ai}Mi=1 are then incorporated together in a region-guided manner.

Spatial Guiding Mask: M spatial guiding masks mi ∈ RH×W are generated
from h, as presented in Fig. 1 (a), to guide the implementation of channel-wise
attention. For each spatial location x, the guiding masks are normalized as below,
to represent pixels from similar regions which will share an attention pattern,

mj(x) =

{
1, j = argmax

i
mi(x)

0, otherwise.
(2)

Region-Guided Attention Gate: The guiding masks are amalgamated with the
attention kernels to construct the region-guided attention gate K ∈ RC×H×W ,
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by stacking the kernels ai via the criteria below,

K(x)← ai, if mi(x) = 1. (3)

Due to the spatial invariance of convolutional networks, regions with similar se-
mantics potentially have the same values in mi and share the attention patterns.
The final output h̃ of RG-CAM is given as follows,

h̃ = K � ĥ, (4)

where � is the element-wise multiplication. RG-CAM endows the spatial diver-
sity to attention over channels in a flexible, efficient, and light-weight manner.
Compared to the backbone branch, the parameters and computational costs of
the attention branch are negligible due to the GAP operation. It requires nei-
ther labeled data nor extra supervision, and is end-to-end trained. We use the
Softmax trick [14] to enable the gradient propagation w.r.t the guiding masks
and select M = 8 for all RG-CAMs.

2.2 Residual Data Consistency Block (RDCB)

GAN-based models have been proven to generate photo-realistic images for MRI
reconstruction [28, 9, 4]. However, the lack of k-space constraints can lead to
irrelevant details [3] and degradation in the reconstruction quality. To encour-
age more consistent reconstructions with the measurements y, we propose a
residual data consistency block (RDCB) to leverage the k-space information to
“correct” the intermediate predictions. DC methods conventionally reduce the
feature channels to handle complex-valued signals, i.e. using 2 channels, which
can be detrimental to the model performance due to the bottleneck design. For
example, the input and output channel sizes of the first convolution in (5) and
Fig. 1 (b) are 16 and 2, representing the feature maps and complex signals, and
vice versa for the second convolution. Instead, we take advantage of residual
learning in the feature space to facilitate feature propagation in DC blocks. As
presented in Fig. 1 (b), the resultant RDCB can be formulated as below,

h∗ ← (1− γ)× h+ γ × conv(DC(conv(h),y;A)), (5)

where h and h∗ denote the input and output features, γ is a trainable parameter,
and DC refers to the data consistency operation [21, 25] which is given by,

DC(x,y;A) = x−AH(Ax− y). (6)

In Sect. 3.3, we demonstrate that the slight modification delivers performance
improvements, showing the efficacy of the proposed residual design.

2.3 Densely Connected Reconstruction Cascade

Deep cascaded networks are shown to yield higher performance in MRI recon-
struction [16, 5, 24, 1], by virtue of the representation power of deep structures.
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Fig. 2: Illustration of (a) densely connected reconstruction cascade and (b) U-
shaped sub-network.

Inspired by dense connections in [12], we propose a densely connected recon-
struction cascade to facilitate feature reuse and transmission. As shown in Fig. 2
(a), the current predictions are collected with the outputs from the preceding
sub-networks via concatenation and passed as input to the following model struc-
ture. The collection of output features from all sub-networks are fused to give
the final reconstruction. The framework takes the zero-filled as input and adopts
five U-shaped sub-networks as illustrated in Fig. 2 (b).

2.4 Objective Function

We adopt the L1 metric and structural similarity index (SSIM) LSSIM to mea-
sure the reconstruction errors. We also train the model with an adversarial loss
Ladv [20] to encourage sharp details. The total objective is given as below, with
practically selecting α = 0.4 and λadv = 0.01 in our experiments,

L = (1− α)L1(G, s) + αLSSIM (G, s) + λadvLadv(G, s), (7)

where G and s refer to the reconstruction and reference.

3 Experiment and Results

3.1 Data and Implementation Details

We use the FastMRI single-coil knee cases [31] to conduct the experiments. Two
random sampling masks are used with acceleration factors of 8× and 4×, as
shown in Fig. 1 (c). We use two channels to represent complex-valued signals.
The model is trained for 35 epochs with a batch size of 5, using an Adam opti-
mizer with β1=0.5, β2=0.999, and a learning rate of 2× 10−4. The method was
implemented in PyTorch on a NVIDIA RTX 3090 GPU. More results, including
4× accelerated reconstructions, are presented in Supplementary Material.
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ground truth (GT)

MICCAN [13] MoDL [1] Unet [31]

ASGAN [19] proposed GT patch

Fig. 3: Comparison results of 8× accelerated MRI reconstruction.

ground truth (GT)

MICCAN [13] MoDL [1] Unet [31]

ASGAN [19] proposed zero-filled

Fig. 4: Error maps (2× amplified) of 8× accelerated MRI reconstruction.

3.2 Comparison Experiments

We present the comparison results with other state-of-the-art methods: MIC-
CAN [13], MoDL [1], FastMRI Unet [31], and ASGAN [19]. MICCAN and MoDL
both adopt deep network cascades for reconstruction, where a channel-wise at-
tention module is used in MICCAN. ASGAN adopts a GAN-based framework
and performs attention selection for feature channels. We present the recon-
structions using 8× and 4× acceleration factors in Fig. 3. It can be observed
that the proposed method produces more faithful results with rich detailed
structures, compared to other results. From the residual maps in Fig. 4, it is
also shown that the proposed method restores the undersampled images with
a higher accuracy, particularly at a high acceleration rate. Quantitatively, we
use PSNR and SSIM as reconstruction error measurement and adopt FID and
KID [2] for the visual evaluation. Table 1 lists the evaluation results, where
the proposed method outperforms other competing approaches at both sam-
pling rates (p-value�0.05). Due to the encoding-decoding structure, our method
shows competitive inference speed, potentially enabling real-time reconstruction.
Additionally, we replace conventional convolutions in sub-networks with separa-
ble (depth-wise+point-wise) convolutions [23] to strike a better accuracy-latency
trade-off. The resultant variant “proposed-S” with fewer parameters is adopted
to further verify that the superior performance is attributable to the proposed
model components and structure, and not simply due to the size of model. We
report the ablation results in the following section.
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Table 1: Quantitative Evaluation on Accelerated MRI Reconstruction. 4× Ac-
celerated Reconstructions Have the Same Run-Time and Model Size as 8×.

method PSNR↑ SSIM↑ FID↓ KID↓ run-time(s)↓ size(MB)↓

proposed 28.65 0.758 74.26 0.012 0.049 44.5
proposed-S 28.12 0.747 80.00 0.014 0.041 22.9
ASGAN [19] 25.45 0.638 104.34 0.036 0.056 17.0
Unet [31] 25.82 0.703 160.35 0.121 0.013 10.5

8× MoDL [1] 27.13 0.620 143.65 0.080 0.091 22.3
MICCAN [13] 26.61 0.642 180.66 0.146 0.043 10.1
zero-filled 20.54 0.388 423.32 0.533 - -

proposed 32.22 0.854 57.18 0.003 - -
proposed-S 32.01 0.850 58.15 0.004 - -
ASGAN [19] 27.73 0.711 82.18 0.016 - -
Unet [31] 28.35 0.771 118.07 0.061 - -

4× MoDL [1] 30.34 0.745 98.86 0.042 - -
MICCAN [13] 30.11 0.711 99.44 0.040 - -
zero-filled 23.94 0.486 255.06 0.239 - -

ground truth (GT)

proposed w/o RDCB w/o dense

w/o RG-CAM w/o RG w/o Res

Fig. 5: Ablation residual maps (2× amplified) of 8× accelerated reconstruction.

3.3 Ablation Analysis

We conduct ablation experiments to evaluate the role of model components. We
present the ablation results in Table 2, where “w/o RDCB”, “w/o dense”, and
“w/o RG-CAM” respectively mean the proposed method without RDCB, dense
network connections, and RG-CAM. For fair comparisons, we use feature repe-
tition to maintain the channel size and model parameters, when removing the
dense connections. The backbone in RG-CAM contains significantly more pa-
rameters than the attention branch, and it is maintained for a fair comparison.
The convolutional layers in RDCB are also kept for the same reason. The results
show that the proposed model components consistently improve the reconstruc-
tion performance in terms of evaluation metrics (p-value�0.05).

To further demonstrate the role of RG-CAM, the variant, dubbed “w/o RG”,
adopts a single kernel to perform channel-wise attention without using the spatial
guiding masks, similar to [27, 17, 13]. From Table 2, we found that the incorpora-
tion of the region-guided mechanism enhances the model performance, compar-
ing “w/o RG” and “proposed”. In contrast, adopting conventional channel-wise at-
tention fails to notably gain performance boost, comparing “w/o RG-CAM” and
“w/o RG”, which suggests the usefulness of the proposed region-guided method.
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Table 2: Ablation Studies on Model Components at 8× Acceleration Factor.
method PSNR↑ SSIM↑ FID↓ KID↓

proposed 28.65 0.758 74.26 0.012
w/o RDCB 27.33 0.731 83.43 0.017
w/o dense 28.03 0.748 81.25 0.015
w/o RG-CAM 28.29 0.753 78.67 0.014
w/o RG 28.26 0.754 77.40 0.013
w/o Res 28.34 0.748 80.13 0.015

Fig. 6: Visualization of guiding masks from (left) penultimate decoding level of
the 4-th sub-network and (right) last decoding level of the 5-th sub-network.

Additionally, the variant “w/o Res” refers to the removal of the residual structure
in RDCB. The results in Table 2 confirm its efficacy in delivering performance
gains. From the residual maps in Fig. 5, it is shown that the proposed method
introduces more accurate reconstructions, compared to other candidates.

3.4 Region-Guided Mask Visualization

To visualize the spatial information learned in RG-CAM, we conflate the guiding
masks where non-zero pixels are shaded in different colors. From the heat maps in
Fig. 6, we can observe clear “segmentations” of different structures. It indicates
that the spatial semantics are implicitly captured by “clustering” pixels from
similar regions, which share the same attention patterns. It is worth noting that
the region-based guiding information is learned and incorporated in channel
recalibration without requiring any annotations for supervision.

4 Conclusions

In this paper, a novel region-guided channel-wise attention network is introduced
for accelerated MRI reconstruction, which adopts an efficient and light-weight
structure to simultaneously make use of the channel-wise attention and the im-
plicitly learned spatial semantics. Incorporated with network dense connections
and data consistency priors, it is demonstrated that the proposed method yields
superior reconstruction performance at different acceleration factors, which can
considerably shorten the MRI scanning time. For the future works, we plan to
apply our method to other anatomical structures, and extend it to dynamic MRI
reconstruction.
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