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High-Fidelity MRI Reconstruction Using Adaptive
Spatial Attention Selection and Deep Data

Consistency Prior
Jingshuai Liu, Chen Qin, and Mehrdad Yaghoobi

Abstract—Compressed sensing (CS) has shown great potential
for fast magnetic resonance imaging (fastMRI). Traditional CS
methods model the inverse problem by leveraging the sparsity
prior to guarantee the success of signal recovery, which is not rich
enough to capture the detailed features of MRI modality. The
other challenge is computational complexity in CS methods which
often include an iterative optimization-based solver, hindering
the growth and development of modern high resolution MRI.
Inspired by existing researches in machine vision tasks, two novel
network blocks are presented here which respectively leverage a)
the spatial correlations and b) data consistency prior, and a novel
multi-level densely connected framework is devised to improve
the model capacity for removing aliasing artifacts from the
under-sampled MR images and recovering missing anatomical
information in high resolution MRIs. It is demonstrated that the
framework produces more realistic and faithful structures and
textural details, providing superior reconstructions in terms of
less visual artifacts and relevant metrics.

Index Terms—GAN-based framework, MRI reconstruction,
adaptive spatial attention

I. INTRODUCTION

S INCE its advent in the last century, magnetic resonance
imaging (MRI) provides a radiation-free and non-invasive

imaging tool and has revolutionized medical imaging and
radiology. However, known as a slow imaging modality,
MRI suffers from enormous consumption in acquisition and
reconstruction time, which hinders its application in time-critic
diagnosis. Various methods have been proposed to facilitate
the time-consuming acquisition and reconstruction steps, such
as parallel imaging (PI) which makes use of the sensitivity
correlations to recover clean images from the under-sampled
measurements [1]. Those methods can be burdened with
expensive and complex equipments and high computational
complexity, and are difficult to remove strong aliasing artifacts,
using traditional reconstruction methods.

Model-based methods solve the ill-posed inverse problems
by leveraging the image prior in the form of data sparsity.
Assuming that the targets can be expressed via sparse rep-
resentations, e.g. in Fourier space, compressed sensing (CS)
achieves accurate MRI reconstruction by solving nonlinear
optimization with the sparsity prior as regularization. Different
from [2] which assumes sparse representations in the image

J. Liu, C. Qin, and M. Yaghoobi are with the Institute for Digital Commu-
nications, School of Engineering, University of Edinburgh, EH9 3JE UK (e-
mail: J.Liu@ed.ac.uk; Chen.Qin@ed.ac.uk; m.yaghoobi-vaighan@ed.ac.uk).

Manuscript received August 14, 2022.

domain or [3]–[5] which require sparse signals in some
transform domains, the work introduced in [6] shows that
the predetermined sparsifying transform can be replaced by a
learnable basis via dictionary learning to enable more parsimo-
nious representations. However, the challenge in holding the
sparsity hypothesis in real-world scenarios and the restricted
capacity of the sparsity prior to capture complex structures
put constraints on the development of CS methods in modern
MRI, and may restrict the achievable resolution.

Many recent works leverage the representation power of
neural networks to model the distribution of MR images and
recover the corrupted signals. The problem of parallel MR
imaging is tackled in [7] by using U-shaped networks (U-net)
to predict the missing k-space data. A cascaded framework
is introduced in [8] to exhibit residual learning of aliasing
artifacts and attain de-aliased outputs. A variational auto-
encoder (VAE) is used in [9] to perform the variational
inference on reconstructions which yields promising results
by maximizing the estimated posteriori (MAP). Generative
adversarial networks (GAN) [10] have achieved great success
in image generation and shown their potential to provide
high-quality MRI reconstructions. A GAN-based framework
is proposed in [11] to encourage sharp and realistic details in
reconstructed images. The methods introduced in [12], [13]
perform MRI reconstruction by optimizing in latent space of
a pre-trained generative model. The model introduced in [14],
dubbed GANCS, leverages the interleaved structure of the
null space operation and multilayer residual blocks to explore
the targeted manifold and explicitly ensure data consistency.
Motivated by the previous works in image domain translation
[15], adversarial cyclic frameworks have been proposed to
recover the under-sampled MR images. Concurrent researches
include Cycle-MedGAN [16] where the perceptual metric [17]
is incorporated to encourage visual realism, and [18] which
solves the inverse problems using cycle-consistent adversarial
networks (CycleGAN).

To provide the guarantee of convergence for MRI re-
construction methods, model-based optimization can be in-
corporated with deep learning-based frameworks. A primal-
dual framework is introduced in [19] which transforms the
conventional L1-based regularization in compressive sensing
to the inner-product and provides superior results over other
optimization-based network models, e.g. ADMM-Net [20]
and IFR-Net [21], in CS-MRI problems. The work in [22]

0000–0000/00$00.00 © 2021 IEEE
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exploits multi-scale transforms in a ISTA-net [23] framework,
showing to significantly improve the model performance.
An automatic feedback mechanism is introduced in [24] to
guide the data-driven optimization cycle and provide more
reliable treatments. It is shown in [25] that plug-and-play
methods can potentially yield better reconstruction quality
when appropriately combining neural networks with model-
based optimizations.

In this paper, we introduce a novel framework to provide
high-fidelity MRI reconstructions. An adaptive spatial atten-
tion selection module (ASASM) and deep data consistency
block (DCB) based model is proposed to better recover miss-
ing information and preserve realistic structures and textures.
To exploit useful information contained in the spatial regions
of high-resolution features, the ASASM module is devised to
efficiently capture contextual information and perform data-
adaptive kernel prediction to increase the diversity of attention
patterns without introducing huge computational complexity.
Traditional data consistency methods inevitably introduce a
bottleneck structure which potentially has a negative impact
on the model performance. To address this issue, the DCB
was devised which takes the advantage of residual learning
in feature space to avoid the bottleneck design and improve
the reconstruction performance. We show that the framework
produces superior results in terms of image quality and recon-
struction accuracy, compared with state-of-the-art methods. To
verify the efficacy of our method, we conduct ablation studies
which demonstrate the role of the suggested multi-level struc-
ture and network modules to register impressive performance
gain for MRI reconstruction. The main contributions of this
paper are summarized below:
• an optimization-inspired reconstruction framework which

has the capacity to leverage domain-specific knowledge
into the reconstruction pipeline to encourage more faith-
ful results;

• a novel module to perform “spatial attention selection”
which endows the network with spatial kernel diversities
and adaptive properties;

• a deep “data consistency block” to enhance the recon-
struction quality by tighter pairing predictions with the
observed measurements;

• a “multi-level densely connected architecture” to enable
feature transmission and reuse at different levels, and
impressively boost performance;

• by simulations, it has been demonstrated that the pro-
posed approach can achieve high-fidelity reconstructions
under aggressive sampling rates, outperforming other
deep-learning based methods in the relevant metrics.

II. RELATED WORKS

In this section, we give a brief review of current researches
closely related to our method, and show how our approach is
associated with their contributions.

A self-attention module is introduced in [26] to capture non-
local dependencies, which is utilized in [27], [28] to improve
the reconstruction quality. The work in [29] employs both
frequency-attention and channel-attention blocks to enhance

the model efficacy and better reconstruct MR images. A
convolutional block attention module (CBAM) is proposed in
[30] to perform adaptive feature refinement. It is suggested
in [31] to integrate the spatial attention unit of CBAM to a
GAN-based framework, which can more accurately recover
anatomical structures for MR images. However, it is still a
challenge to recover faithful structures and yield sophisticated
textural details in aggressive under-sampling diets, which
shows potential opportunities for performance enhancement
using more effective attention designs. In a recent conference
paper, we introduce a GAN-based framework which presents
feature refinement and attentive selection to generate sharp
and realistic textures in MRI reconstructions [32]. We however
found that in some cases it can produce slight artifacts and fail
to properly recover structural details. To address the drawbacks
of the method in [32] and push the quality of reconstructions,
we propose a novel attention module to perform spatial
attention with diverse local priors for compressive MRI.

In recent works of MR image restoration, it is a growing
trend to leverage model-based algorithms to provide conver-
gence guarantee for end-to-end solutions and achieve high-
quality MRI reconstructions. A deep framework is proposed
in [33] to recover under-sampled inputs with data consistency
modules to correct the reconstructed data. DeepCascade in-
troduced in [34] reconstructs dynamic MRI sequences using
a deep cascade of convolutional neural networks (CNN) and
data consistency layers. Based on the iterative shrinkage-
thresholding algorithm, ISTA-net is derived in [23] for image
compressed sensing by replacing the pre-defined sparsifying
transform with deep neural networks. However, the bottleneck
design in basic data consistency blocks can potentially degrade
the model performance. We use an efficient structure to explore
the data consistency in feature space and benefit the model in
inferring missing information from corrupted inputs.

As an efficient network structure, densely connected layers
are proposed in [35] to prevent the gradient vanishing problem
which hinders us from increasing the model depth to build
high-performance networks. As displayed in Fig. 1 (a), each
bypass connection concatenates the current feature maps to
the consecutively reused feature volume. Based on the work
in [35], a deep residual network is introduced in [36] to
recover heavily down-sampled images. An enhanced model,
dubbed ESRGAN, is derived in [37] to retrieve more natural
textures, by leveraging the benefits of both residual and dense
connections. Inspired by the success of feature reuse in vision
tasks, we here incorporate the multi-level dense connections in
a cascaded network architecture to enable easier information
transmission and enhance the model capacity.

III. METHOD

We introduce our method for MRI reconstruction in this
section. We first formalize the reconstruction problem and de-
scribe the design of the reconstruction pipeline. Subsequently,
the devised network components used in our framework are
introduced. In the last part of this section, we give the objective
functions adopted in the training phase.
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A. Problem Formulation

MRI reconstruction is traditionally posed as an optimization
problem, with A denoting the encoding matrix, y the measure-
ment, and R(x) a regularization term,

min
m

λ‖Am− y‖2 +R(m). (1)

Compressed sensing (CS) methods adopt the sparsity prior
as regularization and solve the problem using iterative algo-
rithms, which are computationally expensive and challenging
to recover highly under-sampled signals, due to the limited
expressiveness of sparsity hypothesis. We propose to leverage
the representation of deep neural networks and provide MRI
reconstructions in an end-to-end diet. To solve (1), an auxiliary
variable u is imported to obtain:

min
m,u

λ‖Am− y‖2 +R(u), s.t.m = u, (2)

The unconstrained form is derived with the Lagrangian α:

min
m,u

λ‖Am− y‖2 +R(u) + α‖m− u‖2. (3)

The problem in (3) is divided into two sub-problems, which
can be solved using an iterative algorithm:

uk+1 ← min
u
R(u) + α‖mk − u‖2 (4a)

mk+1 ← min
m

λ‖Am− y‖2 + α‖m− uk+1‖2. (4b)

The term in (4a) models the regularization prior which we
propose to capture via the learning ability of deep neural
networks. The data consistency (DC) constraint is imposed
in (4b) and has a closed-form solution. The iterative update
steps are given by:

uk+1 ← fθk(mk) (5a)

mk+1 ← uk+1 − ηAH(Auk+1 − y)︸ ︷︷ ︸
DC operation

, (5b)

where fθk denotes the k-th sub-network of the reconstruc-
tion framework, AH is the conjugate transpose of A, and
η = α

λ+α . The update steps in (5) are unrolled to derive the
reconstruction pipeline [38]–[40], by alternating the network
reconstruction update and the DC operation. To improve the
model performance, we propose an adaptive spatial attention
selection module (ASASM) and multi-level dense connections.
We devise a deep data consistency block (DCB) to reduce
the effect of the bottleneck structure in DC blocks. The
reconstruction framework is illustrated in Fig. 2, which we
will introduce in detail below.

B. Adaptive Spatial Attention Selection Module (ASASM)

Attention modules, e.g. the transformer and its variants,
have been widely used for visual tasks and shown their
potential to push performance improvements. To avoid the
enormous memory and computational increments, [30] intro-
duces a light-weight attention module, dubbed convolutional
block attention module (CBAM). The CBAM module, which
comprises a channel gate and a spatial gate, leverages feature
statistics, e.g. the average and maximum values, to govern
the contribution of different channels and spatial positions.
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Fig. 1. Illustration of basic modules where C and N2 indicate the channel
size and spatial resolution of output features. a) Densely connected block, b)
deep data consistency block (DCB), and c) adaptive spatial attention selection
module (ASASM).

However, it can be challenging to provide rich representations
using feature statistics. For the purpose of encouraging the
network to focus on more important information and achieve
notable improvements, we propose an adaptive spatial at-
tention selection module (ASASM), displayed in Fig. 1 (c),
which leverages locality-aware spatial attention to endow the
learned representations with spatial attention diversities and
adaptability. We introduce the architecture of ASASM in the
following part of this section.

To overcome the quadratic complexity of conventional
attention modules, a spatial gate is introduced in [30] to
model the feature statistics to determine the importance of
information encoded at each spatial position. However, it can
be difficult to handle the complicated relationships among
extracted features. We propose to utilize a network structure to
predict the spatial attention patterns from the entire features,
and perform the spatial attention selection by computing the
weighted average of pixels in the neighboring region with
adaptively computed kernels. The method in filter adaptive
networks [41] computes independent kernels for each pixel
and simultaneously introduces channel-wise and spatial vari-
ability, i.e. pixels at different channels and spatial positions
are averaged with their respective weights to give the output
values. The size of the filter prediction is (C · k2)×H ×W ,
where C is the number of channels, k2 represents the kernel
size, and H×W indicates the feature resolution. Consequently,
it tremendously increases the computational burden. Different
from that, we propose to capture the spatial interdependencies
with enlarged receptive fields via an encoding-decoding struc-
ture, and subsequently derive the spatial variance in kernel
predictions to exploit the diversities of attention patterns and
enhance the representation power. As depicted in Fig. 1 (c),
the extracted features are passed to a shallow U-net to predict
the adaptive kernels which are potentially varying for different
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Fig. 2. Overview of the model architecture. The corrupted input is first mapped into feature space by a head block, and then processed by a cascade of
U-shaped sub-networks which are densely connected via multi-level shortcuts. Finally, the output features are fused together to give the reconstruction outcome
using a tail block. To simplify the illustration, the densely connected design is implemented by concatenating the current output with the collection of all
previous predictions, alternating between feature concatenation and skip-connection.

spatial locations. Compared to the reconstruction pipeline, the
U-net for kernel prediction has significantly fewer parameters,
which can provide a better accuracy-latency trade-off. The size
of the predicted filters is reduced to k2×H×W , which greatly
decreases the computational and model overhead. The adaptive
filtering is applied as follows,

ĥ(x) = h(x) +
∑
δ∈∆

ω(δ, x)h(x+ δ), (6)

where h(x) and ĥ(x) denote the input and output feature
vectors formed with pixels across the channel axis at spatial
position x, ∆ represents a regular kernel grid, e.g. {−1, 0, 1}2
for k = 3, δ is the footprint moving in the filtering sliding win-
dow, and {ω(δ, x)}δ∈∆ represents the predicted preferences
of the neighboring locations around position x. In order to
potentially produce positive attentions and make the gradients
manageable, we use a Softmax function to normalize the
combination coefficients {ω(δ, x)}, similar to the practice in
[42]. We found that in simulations Softmax normalization
leads to slightly more stable gradients.

C. Deep Data Consistency Block (DCB)

The incorporation of data consistency (DC) blocks, which
“correct” the predicted images with the observed measure-
ments, into deep structures yields considerable improvements
in MRI reconstruction, as shown in [33], [38]. Such practice
requires to map the predicted features into image domain,
which can potentially dispose of important features, due to
the feature channel reduction. We use a deep data consistency
block (DCB) to correct the predictions and circumvent the
bottleneck design via a skip-connected symmetric structure,
as displayed in Fig. 1 (b). For simplicity, we assume to follow
the single-coil sensing configuration in this section. We first
specify two types of data consistency operators, the soft and
hard DC operators, and then manifest that our design meets

the data consistency requirements and is the extended version
of the previous works. The soft DC operator Ω∗ mixes the
predictions with the observed k-space data on the sampling
mask, whereas the hard DC operator Ω replaces the values
with the measurements, as shown below:

Ω∗(x, υ; y,m) = F−1(m� F (x) + υy

1 + υ
+ (1−m)� F (x))

Ω(x; y,m) = F−1(m� y + (1−m)� F (x)), (7)

where x, υ, and m denote the prediction, a parameter, and
the sampling mask, y denotes the measurement given by y =
m�F (s), F and F−1 are the Fourier transform and its inverse,
and � denotes the element-wise multiplication. Ω∗ is utilized
in [39], [43] to realize the DC term, and [23], [33] leverage
the DC prior [22] to update the synthesized images as shown
below,

x← x− ηF−1(m� F (x)− y), (8)

where η is the step size. It can be mathematically proved that
the update rules in Ω∗ and (8) are equivalent to each other
and can be converted to the following form,

x← γx+ (1− γ)Ω(x; y,m), (9)

if the parameters satisfy γ = 1
1+υ = 1 − η. We enhance

the update rule in (9) by extending it to feature space which
potentially contains more information. We show the modified
version as follows,

h← γh+ (1− γ)f∗(Ω(f(h); y,m)), (10)

where f and f∗ are two convolutional layers used to reduce
and expand feature channels, as shown in Fig. 1 (b). By
leveraging the skip-connection, we exploit the advantage of
residual networks to alleviate the impact of gradient vanishing
and facilitate feature propagation.
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D. Multi-Level Densely Connected Architecture

Inspired by the success of densely connected layers in
image tasks, we introduce the multi-level dense connections
to form a novel architecture which potentially refines the
learned feature maps with complementary information by
“reusing” the synthesized features at multiple levels. To clearly
describe the framework, we define a dictionary with items
SI , S0, S1, S2, ...SL, representing the feature maps at different
levels of each sub-network including input-output pairs, as
illustrated in Fig. 2. L denotes the number of transitional block
pairs and implies that in total the model introduces L + 2
feature levels from image resolution to the topmost feature
domain. We utilize the superscript and subscript to separately
denote the connection nodes, which can provide convenience
to elaborate on the forward computations. Taking S

(1)
e, 2 for

instance, the scripts (1) and e, 2 depict that it comes from
the second level of the encoding part of the first sub-network.

We demonstrate the proposed architecture in what follows.
From simplicity, we only present two sub-networks in the
pipeline and select L to be 2, as illustrated in Fig. 2. At each
feature level, all previous predictions, not only the preceding
one, are collected together and concatenated with the current
feature volume to enable the multi-level dense connections.
It is noteworthy that the intra- and inter-connections directly
start from feature concatenation and the current features are
added to the feature collection transmitted from the preceding
stage without removing any previous outputs. The densely
connected design is therefore applied by alternating between
feature concatenation and skip-connection.

The notations of the blocks used in the framework can be
found in the annotations in Fig. 2, and we thus evade being
necessitated to respectively define them. The initial input to
the model is the zero-filled z given by the inverse Fourier
transform of the under-sampled measurements. After mapping
the two-channel input into feature domain via a head block,
we start from the computations of the encoding features at
the first sub-network, which are given by gradually extracting
information from the previous outputs as follows,

S
(1)
e, I ← head(z)

S
(1)
e, 0 ← h(1)(S

(1)
e, I)

S
(1)
e, 1 ← d

(1)
1 (S

(1)
e, 0)

S
(1)
e, 2 ← d

(1)
2 (S

(1)
e, 1). (11)

Following the design of intra-connections in conventional U-
nets, we compute the decoding features as follows,

S
(1)
d, 1 ← [u

(1)
2 ◦ r

(1)
2 (S

(1)
e, 2), S

(1)
e, 1]

S
(1)
d, 0 ← [u

(1)
1 ◦ r

(1)
1 (S

(1)
d, 1), S

(1)
e, 0]

S
(1)
d, I ← [D(1) ◦ r(1)

t ◦A(1)(S
(1)
d, 0), S

(1)
e, I ], (12)

where [ ] denotes the concatenation of feature maps along the
channel axis. We then pass the output dictionary on to the

next sub-network. The encoding features are generated with
the collections of all preceding outputs at the same levels:

S
(2)
e, I ← S

(1)
d, I

S
(2)
e, 0 ← [h(2)(S

(2)
e, I), S

(1)
d, 0]

S
(2)
e, 1 ← [d

(2)
1 (S

(2)
e, 0), S

(1)
d, 1]

S
(2)
e, 2 ← [d

(2)
2 (S

(2)
e, 1), S

(1)
e, 2]. (13)

Conforming to (12), the decoding procedure is shown below,
noting that only intra-connections occur here,

S
(2)
d, 1 ← [u

(2)
2 ◦ r

(2)
2 (S

(2)
e, 2), S

(2)
e, 1]

S
(2)
d, 0 ← [u

(2)
1 ◦ r

(2)
1 (S

(2)
d, 1), S

(2)
e, 0]

S
(2)
d, I ← [D(2) ◦ r(2)

t ◦A(2)(S
(2)
d, 0), S

(2)
e, I ]. (14)

When we reach the output layer of the final sub-network, e.g.
S

(2)
d, I in the current configuration, a tail block is adopted to

reduce the channel size and map the synthesized features into
images as shown in Fig. 2:

G = tail(S
(2)
d, I), (15)

where G is the reconstruction result.

E. Final Framework Design

As illustrated in Fig. 2, we utilize two convolutional blocks
as the head and tail modules to perform channel expansion
and reduction. We deploy the densely connected layers at all
decoding feature levels of the U-shaped sub-networks, and
embed the ASASM and DCB modules at the top decoding
level. The dense connections at multiple levels are adopted to
allow intra- and inter- feature propagation. We cascade 4 sub-
networks in the reconstruction pipeline and select c = 1 for
the channel setting.

F. Loss Function Design

In this section, we elaborate on the loss functions used in
the training phase. We leverage the high-quality references
to supervise the training and enforce the data consistency
by comparing the reconstructions with the observed measure-
ments. We encourage sharper and realistic details by training
the model in an adversarial diet.

1) Reconstruction Loss: We employ the L1-norm and struc-
tural similarity index metric (SSIM) to quantify the discrep-
ancies between the prediction G and fully-sampled reference
s. Compared to L2-based losses, e.g. the mean squared error
(MSE), which potentially produce blurriness in generations,
the L1 loss attempts to mitigate the artifacts caused by
L2. It is suggested in [44] that SSIM-based losses are able
to maintain the contrast of high-frequency components and
produce visually pleasing results. The reconstruction loss is
given as follows,

Lrec = (1− α)L1(G, s) + αLSSIM (G, s). (16)

where α is set to 0.4.
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2) Data Consistency Loss: One challenge of learning a
mapping from one domain to the other is to maintain some dis-
criminative information. e.g. semantic attributes, and enforce
the synthesized outputs being in agreement with the inputs in
terms of salient features. Data consistency terms are proposed
in [15], [45] to constrain the solutions within some targeted
search space and diminish the mismatching problem. We
leverage the consistency loss to encourage the reconstructions
to be consistent with the observations, i.e. the under-sampling
operation should yield closely matching results. We calculate
the consistency loss in k-space as suggested in [46]. An
alternative practice is adopted in [18] which applies it in image
space. Empirically, we found that they behave very similarly
and introduce no fundamental difference. The data consistency
loss is calculated as follows,

Lcyc = ‖y −m� F (G)‖1, (17)

where the Fourier transform and under-sampling operator are
independently applied to each sensitivity coil when dealing
with multi-coil data.

3) Adversarial Loss: Generative adversarial networks [37]
show great success in producing photo-realistic images. In an
adversarial diet, GAN-based models learn the distribution of
real data by adopting a discriminator to distinguish generated
data from their real counterparts and a generator to fool the
discriminator. To address the issues, e.g. the gradient vanishing
problem, in Vallina GAN, least squares GAN (LSGAN) is pro-
posed in [47] to prevent the saturation, stabilize the training,
and empirically provide faster convergences. The adversarial
loss is then given by,

LDadv = E[‖D(s)− b‖22] + E[‖D(G)− a‖22]

LGadv = E[‖D(G)− c‖22], (18)

where D denotes the discriminator, E is the expectation, and
the hyper-parameters a, b, and c are set to be a = 0 and
b = c = 1 [47]. We adopt the patch-based discriminator in the
adversarial diet, also used in CycleGAN [15], which consists
of a standard convolutional layer followed by three strided
convolutional layers to reduce the spatial size of extracted
features.

4) Final Objective: The final objective used in network
training is given as follows,

L = E{(G,s)}[λrecLrec + λcycLcyc + λadvLadv]. (19)

IV. EXPERIMENTS

In this section, we assess the performance of the proposed
framework on both single-coil and multi-coil MRI datasets.
The acceleration factors are selected to be 8× and 4× along
the phase encoding direction in k-space, as illustrated in Fig.
3, with respectively 4% and 8% central lines preserved and
periphery of k-space sampled randomly. The fully sampled k-
space data are stored in h5 files and loaded in experiments
using the official code package [48]. The under-sampling
process is implemented on the k-space raw data and the inverse
Fourier transform is applied to map k-space signals to image
domain. It is noteworthy that no pre-processing operations, e.g.

Fig. 3. Illustration of under-sampling patterns at 8× and 4× acceleration.
Left) fully sampled, middle) sampling pattern, right) zero-filled.

compressing images which are stored in a database and later
used for synthesizing a new k-space and combining multi-coil
signals via the root sum of squares (RSS) method to obtain
non-negative magnitude images [49], which potentially affect
the evaluation of model performance, are used in the simulated
encoding process, ensuring that the simulations can be close
to real-world applications. We present the comparisons against
other state-of-the-art methods. We also display the ablation
results to further substantiate the effectiveness of the proposed
method. The code of our simulations will be released at
https://github.com/JLiu-Edinburgh/HFMRI Model.

A. Single-Coil Knee MRI Reconstruction

We use the NYU single-coil knee MRI database [48] to con-
duct experiments, which contains rich textures and structural
details. The data were collected from about 1500 fully sampled
MRI scanning cases obtained on 3 and 1.5 Tesla magnets. The
raw dataset provides coronal proton density-weighted images.
It is distributed as a collection of HDF5 data files, each of
which contains the k-space complex-valued data. The dataset
was acquired using a coronal proton-density weighting pulse
sequence and the following sequence parameters: matrix size
320 × 320, in-plane resolution 0.5mm × 0.5mm, repetition
time (TR) ranging between 2200 and 3000 ms, and echo time
(TE) between 27 and 34 ms. Due to the limited computational
resource, 400 scanning cases are used to train the models
and 164 different cases are used in evaluations. The generator
takes the zero-filled, which is the inverse Fourier transform of
the zero-filled k-space data, as input. We use two channels
to handle complex-valued data. The sub-sampling rate is
respectively set to 8 and 4, using a fixed random mask.
The training parameters are practically set to λrec = 10,
λcyc = 0.5, and λadv = 0.01.

We compare the proposed framework with other deep
learning methods: MICCAN [43], MoDL [39], FastMRI U-net
[48], and ASGAN [32]. MICCAN proposes a deep network
with channel-wise attention modules for MRI reconstruction.
MoDL combines the representation power of deep neural
networks with model-based algorithms to enhance the recon-
struction quality. FastMRI U-net reconstructs images from
the magnitude maps of the under-sampled signals. ASGAN
incorporates the large-field contextual feature integration mod-
ules with attention selection in a GAN-based framework to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

(a)

ground truth (GT)
PSNR/SSIM

MICCAN [43]
26.61/0.642

MoDL [39]
27.13/0.620

Unet [48]
25.82/0.703

ASGAN [32]
25.45/0.638

proposed
27.71/0.738

zero-filled
20.54/0.388

(b)

ground truth (GT)
FID/KID

MICCAN [43]
180.66/0.146

MoDL [39]
143.65/0.080

Unet [48]
160.35/0.121

ASGAN [32]
104.34/0.036

proposed
86.46/0.021

zero-filled
423.32/0.533

Fig. 4. Comparison results of 8× accelerated knee MRI reconstruction.

generate more local textures and achieve fine-grained MRI
reconstructions.

We present the comparison results at 8× and 4× accelera-
tion rates in Fig. 4 and 5. It can be observed that the proposed
method produces sharper and more realistic reconstructions,
compared with the other approaches. Overall, our framework
can preserve salient and informative structures, e.g. Fig. 4
(a), generate more natural and complicated textural features,
e.g. Fig. 5 (b), and achieve high-fidelity reconstructions from

highly under-sampled measurements. The corresponding resid-
ual error maps are displayed in Fig. 4 and 5, where the
proposed method yields reconstructions with fewer errors,
particularly at a high under-sampling rate.

To evaluate the reconstruction quality using different meth-
ods, we adopt PSNR and SSIM as assessment metrics, in
which higher values are better. In order to assess the perfor-
mance of different methods in terms of perceptual quality,
the Fréchet inception distance (FID) and the kernel inception
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(a)

ground truth (GT)
PSNR/SSIM

MICCAN [43]
30.11/0.711

MoDL [39]
30.34/0.745

Unet [48]
28.35/0.771

ASGAN [32]
27.73/0.711

proposed
31.62/0.841

zero-filled
23.94/0.486

(b)

ground truth (GT)
FID/KID

MICCAN [43]
99.44/0.040

MoDL [39]
98.86/0.042

Unet [48]
118.07/0.061

ASGAN [32]
82.18/0.016

proposed
61.43/0.005

zero-filled
255.06/0.239

Fig. 5. Comparison results of 4× accelerated knee MRI reconstruction.

distance (KID) [50], in which lower values are preferred,
are utilized. The quantitative assessment is performed on the
whole imagery with the fully sampled data and p-value statis-
tical test results are also presented. We present the evaluation
results in Tab. I. From Tab. I, we can observe that the proposed
method consistently produces superior results than the other
approaches with remarkable improvements in evaluation met-
rics, which provides the justification of its effectiveness. We
found that MoDL has high PSNR scores. We surmise that it is

due to the L2-based loss used in [39] as the objective function
which potentially leads to high PSNR values but fails to
correlate well with the structural assessment and the intricate
properties of human visual perception [51]. It is noteworthy
that the proposed model shows superior performance with
fewer parameters than other competing models, and achieves
competitive inference speed which potentially enables real-
time reconstruction.
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TABLE I
QUANTITATIVE EVALUATION ON ACCELERATED KNEE MRI RECONSTRUCTION. 4× ACCELERATED RECONSTRUCTIONS HAVE THE SAME LATENCY (S)

AND MODEL SIZE (MB) AS 8×.

method PSNR↑ SSIM↑ FID↓ KID↓ p-value Latency↓ Size↓

proposed 27.71(±1.75) 0.738(±0.06) 86.46(±2.54) 0.021(±0.001) p < 0.05 0.028 4.51
ASGAN [32] 25.45(±1.63) 0.638(±0.05) 104.34(±2.43) 0.036(±0.001) - 0.056 17.0

8× Unet [48] 25.82(±1.74) 0.703(±0.08) 160.35(±4.58) 0.121(±0.003) - 0.013 10.5
MoDL [39] 27.13(±1.68) 0.620(±0.05) 143.65(±3.68) 0.080(±0.003) - 0.091 22.3

MICCAN [43] 26.61(±1.77) 0.642(±0.05) 180.66(±5.04) 0.146(±0.004) - 0.043 10.1
zero-filled 20.54(±1.29) 0.388(±0.06) 423.32(±7.30) 0.533(±0.005) - - -

proposed 31.62(±1.70) 0.841(±0.05) 61.43(±1.62) 0.005(±0.001) p < 0.05 - -
ASGAN [32] 27.73(±1.54) 0.711(±0.06) 82.18(±1.85) 0.016(±0.001) - - -

4× Unet [48] 28.35(±1.72) 0.771(±0.07) 118.07(±3.93) 0.061(±0.002) - - -
MoDL [39] 30.34(±1.66) 0.745(±0.05) 98.86(±3.46) 0.042(±0.002) - - -

MICCAN [43] 30.11(±1.73) 0.711(±0.06) 99.44(±3.82) 0.040(±0.002) - - -
zero-filled 23.94(±1.45) 0.486(±0.07) 255.06(±4.65) 0.239(±0.003) - - -

B. Multi-Coil Brain MRI Reconstruction

We show that the proposed framework is extensible to multi-
coil MRI reconstruction. We train our model on a multi-coil
brain MRI dataset from [39]. The dataset was acquired using a
3D T2 CUBE sequence. k-space signals are sensed by multiple
coils and the sensitivity maps are provided in the dataset.
The matrix dimension of the brain dataset is 256 × 232 with
an isotropic resolution of 1 mm, a field of view (FOV) of
210mm× 210mm, and TE=84 ms. It contains 360 scanning
samples for training and 164 samples available for test. For
multi-coil MRI, the sampling process occurs individually on
each coil. The root sum of squares (RSS) method is com-
monly used to handle the coil correlations by combining the
magnitude maps of sensed data. However, the computation
of magnitudes disposes of the phase information and can
lead to performance degradation. Instead, we simulate the
corruption process by projecting the full reconstructions onto
each coil sensitivity and computing the sensitivity-weighted
average as input to the framework, used also in [38], [39]. The
relationships between the sensitivity-weighted average and its
coil projections are presented below,

Si(s;Ci) = Cis

s({Si}; {Ci}) =

∑
i C̄iSi∑
j |Cj |2

, (20)

where Ci, C̄i, and Si denote the i-th coil sensitivity map,
its conjugate, and the projected signal s with the sensitivity
map Ci. Noting that the under-sampling operation is applied
to each Si, the coil sensitivities are individually leveraged in
the DCB block to enforce the k-space data consistency, which
is formulated as below,

h← γh+ (1− γ)f∗(s({Ω(Si(f(h);Ci); yi,m)}, {Ci})),
(21)

where yi denotes the measurement corresponding to the i-th
coil sensitivity. Empirically, we set the training parameters to
be λrec = 30, λcyc = 0.5, and λadv = 0.005.

We compare our method with 3 model-based deep learning
approaches in 8× and 4× accelerated MRI reconstruction:
MoDL [39], ISTA-Net+ [23] which unrolls the shrinkage-
thresholding algorithm to resolve the inverse problem, and

VS-Net [38] which exploits the iterative process of the vari-
able splitting algorithm in a deep network architecture. The
reconstruction results are displayed in Fig. 6 and 7. We can
observe that the proposed framework yields shaper edges and
clearer details in reconstructed images. From the correspond-
ing residual maps displayed in Fig. 6 and 7, it is shown that the
proposed method generates reconstructions with fewer errors.
We present the evaluation results in Tab. II. Compared to
ISTA-Net+ and VS-Net which outperform MoDL in terms
of both visual quality and quantitative evaluations, our model
with competitive parameter size and execution speed has
improvements in PSNR and SSIM, and posts significant gains
in FID and KID, indicating its contributions to the accuracy
and perceptual believability of MRI recovery.

C. Ablation Studies on Model Components

We verify the effectiveness of the proposed structure and
model components in ablation cases. We first conduct an
ablation study to demonstrate the efficacy of the proposed
multi-level dense connections. We sequentially cascade the U-
shaped sub-networks, as illustrated in Fig. 8 (a), to construct
the model denoted by (A) sequential. A densely connected
variant, dubbed (B) denseNet, is derived by only gathering
the initial input and all previous outputs of sub-networks
together, as displayed in Fig. 8 (b). Compared to (A), it
enables dense connections of holistic networks. To balance
the model parameter size, we “copy” the encoding and out-
put features of each sub-network for variant (A) and (B),
which therefore share the parameter overhead of the multi-
level connected structure. To substantiate the effectiveness of
the proposed model components, we respectively remove the
DCB and ASASM modules, which lead to the competing
variants (C) w/o DCB and (D) w/o ASASM. For a fair
comparison, the shallow U-net in the ASASM module is
preserved to form a residual connection where the output
channel size is accordingly adjusted to meet the input size.
Similarly, the convolutional layers in DCB are kept for (C).
We test the performance of the aforementioned variants on the
knee dataset, since knee imagery contains more complicated
features and can be suitable to present subtleties and nuances
in reconstructions using different methods.
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(a)

ground truth (GT)
PSNR/SSIM

zero-filled
23.25/0.674

MoDL [39]
25.28/0.711

ISTA-Net+ [23]
27.48/0.831

VS-Net [38]
27.56/0.833

proposed
27.65/0.853

GT patch
-/-

(b)

ground truth (GT)
FID/KID

zero-filled
301.13/0.396

MoDL [39]
238.32/0.283

ISTA-Net+ [23]
171.58/0.170

VS-Net [38]
147.65/0.129

proposed
89.80/0.057

GT patch
-/-

Fig. 6. Comparison results of 8× accelerated brain MRI reconstruction.

We present the evaluation results in Tab. III. It is shown
that the proposed multi-level densely connected architecture
derives considerably more performance gains than the variant
(B) with only shortcuts connecting output layers of each sub-
network, compared to the sequential model (A). It verifies
the usefulness of feature transmission and reuse at multiple
levels in pushing performance enhancements. From Tab. III,

we observed that both DCB and ASASM can improve the
model performance, comparing the variant (C) and (D) with
the proposed model, which confirms their efficacy in pushing
reconstruction improvements.

To visualize the performance gains given by the proposed
approaches, we display the residual error maps of the ablation
cases in Fig. 9. We found that compared to the variant (A) the
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(a)

ground truth (GT)
PSNR/SSIM

zero-filled
25.66/0.770

MoDL [39]
29.89/0.801

ISTA-Net+ [23]
32.26/0.916

VS-Net [38]
32.18/0.914

proposed
33.20/0.938

GT patch
-/-

(b)

ground truth (GT)
FID/KID

zero-filled
228.14/0.267

MoDL [39]
150.11/0.152

ISTA-Net+ [23]
83.03/0.053

VS-Net [38]
86.01/0.057

proposed
51.93/0.018

GT patch
-/-

Fig. 7. Comparison results of 4× accelerated brain MRI reconstruction.

proposed multi-level densely connected architecture produces
significantly fewer reconstruction errors, while the comparison
model (B) with dense connections only slightly reduces the
errors, which shows the enhanced reconstruction capacity
via dense skip-connections at multiple levels. The removal
of the DCB module in (C) introduces much more errors,
demonstrating the necessity of DCB in recovering accurate re-

constructions. Compared to (D) without the ASASM module,
the proposed model produces fewer errors particularly in some
local regions, showing the efficacy of ASASM in improving
the reconstruction accuracy. In addition, we visualize in Fig.
10 the reconstruction results produced by models with and
without the presence of ASASM to further demonstrate its
contributions. It can be observed that the model without using
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TABLE II
QUANTITATIVE EVALUATION ON ACCELERATED BRAIN MRI RECONSTRUCTION. 4× ACCELERATED RECONSTRUCTIONS HAVE THE SAME LATENCY (S)

AND MODEL SIZE (MB) AS 8×.

method PSNR↑ SSIM↑ FID↓ KID↓ p-value Latency↓ Size↓

proposed 27.65(±1.66) 0.853(±0.05) 89.80(±3.85) 0.057(±0.001) p < 0.05 0.031 4.51
VS-Net [38] 27.56(±1.69) 0.833(±0.06) 147.65(±4.48) 0.129(±0.002) - 0.035 4.32

8× ISTA-Net+ [23] 27.48(±1.68) 0.831(±0.05) 171.58(±4.57) 0.170(±0.002) - 0.189 1.47
MoDL [39] 25.28(±1.83) 0.711(±0.04) 238.32(±4.88) 0.283(±0.002) - 0.094 22.3
zero-filled 23.25(±2.24) 0.674(±0.07) 301.13(±4.50) 0.396(±0.003) - - -

proposed 33.20(±1.10) 0.938(±0.02) 51.93(±2.33) 0.018(±0.001) p < 0.05 - -
VS-Net [38] 32.18(±1.19) 0.914(±0.02) 86.01(±3.48) 0.057(±0.002) - - -

4× ISTA-Net+ [23] 32.26(±1.18) 0.916(±0.02) 83.03(±2.53) 0.053(±0.002) - - -
MoDL [39] 29.89(±1.72) 0.801(±0.03) 150.11(±3.52) 0.152(±0.002) - - -
zero-filled 25.66(±2.06) 0.770(±0.06) 228.14(±3.98) 0.267(±0.002) - - -

(a)

(b)

(c)

Fig. 8. Illustration of model cascade categories. a) Sequentially connected,
b) densely connected, and c) multi-level densely connected. For simplicity,
the intra-connections in sub-networks are not displayed in c).

ASASM potentially produces corrupted local structures, e.g.
the edge dislocation in Fig. 10, which can be restored when
the ASASM module is incorporated into the reconstruction
framework. It implies the capacity of the ASASM-integrated
model to retrieve contextual information, which is expressed
in the form of data-adaptive spatially-varying attention kernels
and shows to be beneficial to restoring structural image
features. This observation showcases that the devised ASASM
can help the network capture local correlations and produce
faithful reconstructions. We display the feature maps generated
with and without the presence of ASASM in Fig. 11. It can be
observed that the feature map produced by the model using
ASASM presents clearer and finer structural details, which
substantiates the effectiveness of ASASM and demonstrates
its capacity to refine the learned feature representation and
consequently improve the quality of recovered images.

D. Ablation Studies on Objective Function

We conduct the ablation experiments on the objective func-
tion used in our framework. The reconstruction loss measures
the differences between the reconstructed image and the
ground truth, which ensures the stability and success of the
supervised training. The model cannot produce any reasonable
reconstruction without it. We therefore compare with two
model candidates, dubbed w/o Lcyc and w/o Ladv , which
are respectively trained with either the data consistency loss
or the adversarial loss removed. The evaluation results are
presented in Tab. IV. We can observe that the candidate trained
without Lcyc shows slightly degraded performance in terms of
all evaluation metrics, which indicates the usefulness of the
data consistency constraint adopted in the training objective.
Compared with the proposed model, candidate w/o Ladv
produces higher PSNR and SSIM scores by a small margin,
while showing considerably increased perceptual distances in
terms of FID and KID. To strike a better trade-off between
reconstruction accuracy and image quality, the combination of
the three objective losses is used in our experiments.

E. Comparison Study on Data Consistency Blocks

To further validate the efficacy of the DCB module, we
compare the proposed method with a conventional data con-
sistency operation by removing the feature skip-connection in
DCB and implementing the general update rule in (9). The
predicted features are therefore updated as follows,

h← f∗(γf(h) + (1− γ)Ω(f(h); y,m)). (22)

We denote by w/o shortcut the resulting model and present
the comparison results in Tab. V. We discovered that the
conventional DC operation shows inferior performance in all
evaluation metrics, e.g. it drops by 0.5dB in PSNR and reaches
93.51 in FID. It indicates the negative impact of the bottleneck
design in DC operators, and confirms that the proposed DCB
can alleviate this issue by easier feature transmission and boost
reconstruction performance.

F. Reconstruction Results with Random Noises

We conducted experiments with single-coil and multi-coil
datasets and two types of anatomical structures: knee and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

(a)

ground truth (GT)

(A) sequential (B) denseNet (C) w/o DCB

(D) w/o ASASM proposed

(b)

ground truth (GT)

(A) sequential (B) denseNet (C) w/o DCB

(D) w/o ASASM proposed

Fig. 9. Ablation residual maps (2× amplified) of 8× accelerated knee reconstruction.

ground truth (GT)

zero-filled w/o ASASM proposed

GT patch

Fig. 10. Ablation results with and without the presence of ASASM at 8× acceleration.

TABLE III
ABLATION STUDIES ON THE PROPOSED MODEL COMPONENTS AND STRUCTURE USING KNEE DATASET

method PSNR↑ SSIM↑ FID↓ KID↓ p-value

(A) sequential 27.25(±1.69)-0.46 0.725(±0.06)-0.013 91.33(±2.74)+4.87 0.024(±0.001)+0.003 -
(B) denseNet 27.49(±1.73)-0.22 0.731(±0.06)-0.007 89.91(±2.48)+3.45 0.023(±0.001)+0.002 -
(C) w/o DCB 26.13(±1.70)-1.58 0.705(±0.06)-0.033 95.50(±3.19)+9.04 0.029(±0.001)+0.008 -
(D) w/o ASASM 27.15(±1.80)-0.56 0.726(±0.07)-0.012 94.23(±2.60)+7.77 0.027(±0.001)+0.006 -
proposed 27.71(±1.75) 0.738(±0.06) 86.46(±2.54) 0.021(±0.001) p < 0.05

TABLE IV
ABLATION STUDY ON OBJECTIVE FUNCTION USING KNEE DATASET

method PSNR↑ SSIM↑ FID↓ KID↓ p-value

proposed 27.71(±1.75) 0.738(±0.06) 86.46(±2.54) 0.021(±0.001) p < 0.05
w/o Lcyc 27.57(±1.81)-0.14 0.734(±0.06)-0.004 88.06(±2.66)+1.6 0.023(±0.001)+0.002 -
w/o Ladv 27.88(±1.83)+0.17 0.750(±0.06)+0.012 106.96(±2.79)+20.5 0.049(±0.001)+0.028 -
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TABLE V
COMPARISON STUDY ON DATA CONSISTENCY BLOCKS USING KNEE DATASET

method DC PSNR↑ SSIM↑ FID↓ KID↓ p-value

proposed DCB 27.71(±1.75) 0.738(±0.06) 86.46(±2.54) 0.021(±0.001) p < 0.05
w/o shortcut general 27.21(±1.76)-0.5 0.730(±0.06)-0.008 93.51(±3.06)+7.05 0.026(±0.001)+0.005 -

ground truth (GT) w/o ASASM proposed

Fig. 11. Feature map visualization with and without the presence of ASASM
at 8× acceleration.

brain. It was demonstrated that the proposed model can
generalize well on different datasets under both single-coil
and multi-coil configurations. In real-world applications, the
observed measurements can be unpredictably corrupted by
noises, possibly leading to degraded reconstruction perfor-
mance. From the results displayed in Fig. 12, where random
Gaussian noises with different deviations are added to the
measurements in inference, we found that the noises increase
the errors appearing in the residual maps. Meanwhile, the
recovered images present less faithful local textures, e.g.
the result with σ = 0.025, compared to the reconstruction
without being corrupted by noises. Those observations have
implications that adding noises to k-space data potentially
imposes a more challenging problem, which can be formed
as a mixture of image de-noising and reconstruction tasks
and requires improving the model robustness capacity. It is
an interesting research direction to incorporate the de-noising
task into MRI reconstruction with the object of enhancing
the robustness and generalization capacity of reconstruction
frameworks.

V. DISCUSSIONS

The simulation results show that the proposed optimization-
inspired MRI reconstruction framework outperforms other
state-of-the-art methods qualitatively and quantitatively on
both knee and brain datasets visually and in evaluation metrics.
In ablation results, we found that the multi-level densely
connected structure introduces much more improvements as
compared to the model only adopting dense connections
between holistic sub-networks, which showcases the benefit of
information transmission and reuse at multiple feature levels.
Compared with the other proposed modules, the DCB delivers
prominent reconstruction improvements and removing it leads
to higher errors as shown in Fig. 9, which is due to the
two advantages of the proposed data consistency method.
Firstly, the DCB explicitly enforces the k-space data constraint
and corrects the intermediate predictions with the observed
measurements when iterating the reconstruction step, which
consequently encourages more faithful results to the target

references. Secondly, the residual shortcut used in the DCB
in feature space avoids the bottleneck design in traditional
data consistency blocks and shows its ability to enhance
the network performance, as demonstrated in Sect. IV-E.
The proposed ASASM module endows the network with the
capacity to perform data-adaptive kernel prediction and en-
code the captured contextual information in spatially-varying
attention patterns. Although the obtained improvements are
not as significant as adopting the DCB, it is demonstrated
in Fig. 10 that employing the ASASM module can alleviate
the corrupted image details and better preserve structures.
Those observations suggest the necessity of the proposed
network components and imply a synergistic effect in attaining
performance advantages.

In experiments, retrospective under-sampling strategies were
adopted to simulate the accelerated data acquisition procedure,
since the datasets only provide fully sampled k-space signals
to demonstrate the effectiveness of devised reconstruction
methods and prospectively acquired data are not available.
In such cases, reconstruction models are trained with the
retrospectively under-sampled phase encodes, and a consistent
acquisition pipeline with a prospective sampling approach can
be provided with a subset of phase encodes pre-determined
and acquired [39]. However, in some cases such as T2-
weighted echo train imaging sequences, the retrospectively
under-sampled data can have a higher signal-to-noise ratio
(SNR) than that of prospectively acquired data, due to the
difference in T2-weighting between the two sampling methods,
which can lead to enhanced correspondence to the ground
truth and over-estimated evaluation results [52]. Meanwhile,
prospectively sampled datasets can be utilized to qualitatively
evaluate the generalizability and validity of reconstruction
methods and more faithfully demonstrate the reconstruction
performance in real-world applications [53], [54]. In light of
these considerations, it can be a crucial research direction
to explore the potential of reconstruction models which take
into consideration both retrospective and prospective sampling
methods, aiming to alleviate the issues caused by the discrep-
ancies between the two under-sampling schemes and enhance
the feasibility of the proposed methods in clinical applications.

In experiments, we respectively trained the models on two
MRI datasets. More training samples can potentially enable us
to train a higher performance model with increased complex-
ity. However, it incredibly requires more training costs and
time. Meanwhile, the data acquisition of MR images can be
more expensive than that of natural images, which sometimes
prevents us from establishing a model on very large-scale MRI
datasets. As opposed to end-to-end network models which
directly learn the mapping from under-sampled signals to
clean images, incorporating domain-specific knowledge into
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ground truth (GT) proposed σ = 0.01 σ = 0.02 σ = 0.025 GT/ZF

Fig. 12. Reconstruction results with random Gaussian noises added to the measurements in inference.

reconstruction frameworks, e.g. in the form of the unrolling
of regularized optimization algorithms, enables us to develop
reconstruction models with fewer samples.

As an alternative to Cartesian sampling patterns, non-
Cartesian sampling strategies, e.g. radial sampling scheme,
are also common practice. However, it demands the use of
the non-uniform fast Fourier transform and gridding [55],
[56], which can propagate interpolation errors and unfavorably
affect the reconstruction performance [34]. We therefore focus
on Cartesian sampling methods in this paper and leave it for
future work to explore other types of non-Cartesian sampling
patterns.

In quantitative evaluations, the FID and KID were adopted
as the perceptual metrics. They exploit deep neural networks to
measure the differences between the reconstructed images and
the ground truths in feature spaces learned from large-scale
image datasets, which are potentially more consistent with the
human perceptual judgement system. Considering the specific
anatomical structures in MRI modality, it is worth exploring
and developing domain-specific evaluation methods to gauge
the visual quality of MRI reconstructions.

VI. CONCLUSION

In this paper, we introduce a novel framework to achieve
high-fidelity MRI reconstruction. We propose two neural net-
work structures to derive adaptive spatial attention and en-
courage data consistency. In experiments, we demonstrate that
on top of a novel multi-level densely connected architecture
the proposed framework can notably promote excellence in
recovering highly corrupted MR images. For the future works,
it is worth investigating the role of data consistency terms
in reconstruction tasks. Another interesting research direction
would be to extend the model to dynamic MRI reconstruction.
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