112 research outputs found

    Bundle-specific Tractogram Distribution Estimation Using Higher-order Streamline Differential Equation

    Full text link
    Tractography traces the peak directions extracted from fiber orientation distribution (FOD) suffering from ambiguous spatial correspondences between diffusion directions and fiber geometry, which is prone to producing erroneous tracks while missing true positive connections. The peaks-based tractography methods 'locally' reconstructed streamlines in 'single to single' manner, thus lacking of global information about the trend of the whole fiber bundle. In this work, we propose a novel tractography method based on a bundle-specific tractogram distribution function by using a higher-order streamline differential equation, which reconstructs the streamline bundles in 'cluster to cluster' manner. A unified framework for any higher-order streamline differential equation is presented to describe the fiber bundles with disjoint streamlines defined based on the diffusion tensor vector field. At the global level, the tractography process is simplified as the estimation of bundle-specific tractogram distribution (BTD) coefficients by minimizing the energy optimization model, and is used to characterize the relations between BTD and diffusion tensor vector under the prior guidance by introducing the tractogram bundle information to provide anatomic priors. Experiments are performed on simulated Hough, Sine, Circle data, ISMRM 2015 Tractography Challenge data, FiberCup data, and in vivo data from the Human Connectome Project (HCP) data for qualitative and quantitative evaluation. The results demonstrate that our approach can reconstruct the complex global fiber bundles directly. BTD reduces the error deviation and accumulation at the local level and shows better results in reconstructing long-range, twisting, and large fanning tracts

    The Mechanical Energies of the Global Atmosphere in El Niño and La Niña Years

    Get PDF
    Two meteorological reanalysis datasets are analyzed to determine the mechanical energies of the global atmosphere in the El Niño and La Niña years. The general consistency of the mean energy components between the two datasets reveals ~1%–3% increase and ~2%–3% decrease in the mean energies in the El Niño years and La Niña years, respectively. These analyses further reveal that the tropospheric temperature responds to the sea surface temperature anomaly with a time lag of two months, which leads to the varying mean atmospheric energies in the El Niño and La Niña years

    UPPRESSO: Untraceable and Unlinkable Privacy-PREserving Single Sign-On Services

    Full text link
    Single sign-on (SSO) allows a user to maintain only the credential at the identity provider (IdP), to login to numerous RPs. However, SSO introduces extra privacy threats, compared with traditional authentication mechanisms, as (a) the IdP could track all RPs which a user is visiting, and (b) collusive RPs could learn a user's online profile by linking his identities across these RPs. This paper proposes a privacypreserving SSO system, called UPPRESSO, to protect a user's login activities against both the curious IdP and collusive RPs. We analyze the identity dilemma between the security requirements and these privacy concerns, and convert the SSO privacy problems into an identity transformation challenge. In each login instance, an ephemeral pseudo-identity (denoted as PID_RP ) of the RP, is firstly negotiated between the user and the RP. PID_RP is sent to the IdP and designated in the identity token, so the IdP is not aware of the visited RP. Meanwhile, PID_RP is used by the IdP to transform the permanent user identity ID_U into an ephemeral user pseudo-identity (denoted as PID_U ) in the identity token. On receiving the identity token, the RP transforms PID_U into a permanent account (denoted as Acct) of the user, by an ephemeral trapdoor in the negotiation. Given a user, the account at each RP is unique and different from ID_U, so collusive RPs cannot link his identities across these RPs. We build the UPPRESSO prototype on top of MITREid Connect, an open-source implementation of OIDC. The extensive evaluation shows that UPPRESSO fulfills the requirements of both security and privacy and introduces reasonable overheads

    Geological characterization of a lower Cambrian marine shale: implications for shale gas potential in North-Western Hunan, South China

    Get PDF
    We have investigated the geologic features of the lower Cambrian-aged Niutitang Shale in the northwestern Hunan province of South China. Our results indicate that the Niutitang Shale has abundant and highly mature algal kerogen with total organic carbon (TOC) content ranging from 0.6% to 18.2%. The equivalent vitrinite reflectance (equal-Ro) value is between 2.5% and 4.3%. Mineral constituents are dominated by quartz and clay. The average quartz content (62.8%) is much higher than that of clay minerals (26.1%), and this suggests a high brittleness index. Organic-matter pores, interparticle pores, intraparticle pores, interlaminated fractures, and structural fractures are all well developed. The porosity ranges from 0.6% to 8.8%, with an average of 4.8%, whereas the permeability varies from 0.0018 to [Formula: see text] (microdarcy) (averaging [Formula: see text]). The porosity of TOC- and clay-rich shale samples is generally higher than that of quartz-rich shale samples. The gas adsorption capacity of the Niutitang Shale varies from 2.26 to [Formula: see text], with a mean value of [Formula: see text]. The TOC content appears to significantly influence gas adsorption capacity. In general, TOC-rich samples exhibit a much higher adsorption capacity than TOC-poor samples. </jats:p

    In Situ Preservation Fraction of Parathyroid Gland in Thyroidectomy: A Cohort Retrospective Study

    Get PDF
    Background and Objectives. Parathyroid failure is the most common symptom after thyroidectomy. To prevent it, a gland was preserved in situ or an ischemic one was autotransplanted. This study explored the relationship between in situ preservation of the parathyroid gland and gland failure. Methods. Consecutive patients who underwent initial total thyroidectomy were enrolled retrospectively in a prospectively maintained database. Patients were divided into groups by parathyroid gland remaining in situ fraction (PGRIF) (PGRIF = number of in situ glands/(total number of identified glands − number of glands in specimen). Patients were graded by tertiles and followed at least one year after surgery. Results. 559 patients were included. PGRIF is significantly inversely associated with transient hypoparathyroidism, protracted hypoparathyroidism, and postoperative hypocalcemia. PGRIF was identified as an independent risk factor for transient hypoparathyroidism, protracted hypoparathyroidism, and postoperative hypocalcemia (OR=0.177, 0.190, and 0.330, resp.). Autotransplantation of parathyroid gland would not affect the calcium level in the long term. Conclusion. In situ preservation of parathyroid gland is crucial for parathyroid function. Less preserved is the independent risk factor for postoperative hypoparathyroidism and hypocalcemia, resulting in a worse function of parathyroid gland in the long term

    Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix

    Get PDF
    Perlecan/HSPG2, a large, monomeric heparan sulfate proteoglycan (HSPG), is a key component of the lacunar canalicular system (LCS) of cortical bone, where it is part of the mechanosensing pericellular matrix (PCM) surrounding the osteocytic processes and serves as a tethering element that connects the osteocyte cell body to the bone matrix. Within the pericellular space surrounding the osteocyte cell body, perlecan can experience physiological fluid flow drag force and in that capacity function as a sensor to relay external stimuli to the osteocyte cell membrane. We previously showed that a reduction in perlecan secretion alters the PCM fiber composition and interferes with bone's response to a mechanical loading in vivo. To test our hypothesis that perlecan core protein can sustain tensile forces without unfolding under physiological loading conditions, atomic force microscopy (AFM) was used to capture images of perlecan monomers at nanoscale resolution and to perform single molecule force measurement (SMFMs). We found that the core protein of purified full-length human perlecan is of suitable size to span the pericellular space of the LCS, with a measured end-to-end length of 170 ± 20 nm and a diameter of 2–4 nm. Force pulling revealed a strong protein core that can withstand over 100 pN of tension well over the drag forces that are estimated to be exerted on the individual osteocyte tethers. Data fitting with an extensible worm-like chain model showed that the perlecan protein core has a mean elastic constant of 890 pN and a corresponding Young's modulus of 71 MPa. We conclude that perlecan has physical properties that would allow it to act as a strong but elastic tether in the LCS

    Prediction of the shear wave speed of seafloor sediments in the northern South China Sea based on an XGBoost algorithm

    Get PDF
    Based on data on the shear wave speed and physical properties of the shallow sediment samples collected in the northwest South China Sea, the hyperparameter selection and contribution of the characteristic factors of the machine learning model for predicting the shear wave speed of seafloor sediments were studied using the eXtreme Gradient Boosting (XGBoost) algorithm. An XGBoost model for predicting the shear wave speed of seafloor sediments was established based on four physical parameters of the sediments: porosity (n), water content (w), density (ρ), and average grain size (MZ). The result reveals that: (1) The shear wave speed has a good correlation with n, w, ρ, and MZ, and their Pearson correlation coefficients are all above 0.75, indicating that they can be used as the suitable characteristic parameters for predicting the shear wave speed based on the XGBoost model; (2) When the number of weak learners (n_estimators) is 115 and the maximum depth of the tree (max_depth) is 6, the XGBoost model has a very high goodness of fit (R2) of the validation data of 0.914, the very low mean absolute error (MAE) and mean absolute percentage error (MAPE) of the predicted shear wave speed are 3.366 m/s and 9.90%, respectively; (3) Compared with grain-shearing (GS) model and single- and dual-parameter regression equation prediction models, the XGBoost model for the shear wave speed of seafloor sediments has higher fitting goodness and lower prediction error

    A neutralizing monoclonal antibody-based competitive ELISA for classical swine fever C-strain post–vaccination monitoring

    Get PDF
    Background: Virus neutralization test (VNT) is widely used for serological survey of classical swine fever (CSF) and efficacy evaluation of CSF vaccines. However, VNT is a time consuming procedure that requires cell culture and live virus manipulation. C-strain CSF vaccine is the most frequently used vaccine for CSF control and prevention. In this study, we presented a neutralizing monoclonal antibody (mAb) based competitive enzyme-linked immunosorbent assay (cELISA) with the emphasis on the replacement of VNT for C-strain post–vaccination monitoring. Results: One monoclonal antibody (6B211) which has potent neutralizing activity against C-strain was generated. A novel cELISA was established and optimized based on the strategy that 6B211 can compete with C-strain induced neutralizing antibodies in pig serum to bind capture antigen C-strain E2. By testing C-strain VNT negative pig sera (n = 445) and C-strain VNT positive pig sera (n = 70), the 6B211 based cELISA showed 100% sensitivity (95% confidence interval: 94.87 to 100%) and 100% specificity (95% confidence interval: 100 to 100%). The C-strain antibody can be tested in pigs as early as 7 days post vaccination with the cELISA. By testing pig sera (n = 139) in parallel, the cELISA showed excellent agreement (Kappa = 0.957) with VNT. The inhibition rate of serum samples in the cELISA is highly correlated with their titers in VNT (r2 = 0.903, p < 0.001). In addition, intra- and inter-assays of the cELISA exhibited acceptable repeatability with low coefficient of variations (CVs). Conclusions: This novel cELISA demonstrated excellent agreement and high level correlation with VNT. It is a reliable tool for sero-monitoring of C-strain vaccination campaign because it is a rapid, simple, safe and cost effective assay that can be used to monitor vaccination-induced immune response at the population level.info:eu-repo/semantics/publishedVersio
    corecore