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based on an XGBoost algorithm
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Guanbao Li2,3,4, Baohua Liu2,3,4, Guangming Kan1,2,3,4*,
Junjie Lu2,4, Lihong Zhao1 and Pengyao Zhi1

1College of Earth Science and Engineering, Shandong University of Science and Technology,
Qingdao, Shandong, China, 2Key Laboratory of Marine Geology and Metallogeny, First Institute of
Oceanography, Ministry of Natural Resources, Qingdao, Shandong, China, 3Laboratory for Marine
Geology, Laoshan Laboratory, Qingdao, Shandong, China, 4Key Laboratory of Submarine Acoustic
Investigation and Application of Qingdao (preparatory), Qingdao, Shandong, China
Based on data on the shear wave speed and physical properties of the shallow

sediment samples collected in the northwest South China Sea, the

hyperparameter selection and contribution of the characteristic factors of the

machine learning model for predicting the shear wave speed of seafloor

sediments were studied using the eXtreme Gradient Boosting (XGBoost)

algorithm. An XGBoost model for predicting the shear wave speed of seafloor

sediments was established based on four physical parameters of the sediments:

porosity (n), water content (w), density (r), and average grain size (MZ). The result

reveals that: (1) The shear wave speed has a good correlation with n,w, r, andMZ,

and their Pearson correlation coefficients are all above 0.75, indicating that they

can be used as the suitable characteristic parameters for predicting the shear

wave speed based on the XGBoost model; (2) When the number of weak learners

(n_estimators) is 115 and the maximum depth of the tree (max_depth) is 6, the

XGBoost model has a very high goodness of fit (R2) of the validation data of 0.914,

the very low mean absolute error (MAE) and mean absolute percentage error

(MAPE) of the predicted shear wave speed are 3.366 m/s and 9.90%, respectively;

(3) Compared with grain-shearing (GS) model and single- and dual-parameter

regression equation prediction models, the XGBoost model for the shear wave

speed of seafloor sediments has higher fitting goodness and lower

prediction error.
KEYWORDS

seafloor sediments, shear wave speed, machine learning, XGBoost model, the northwest
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Introduction

As one of the important parameters of seafloor geoacoustic

properties, sediment shear wave speed has important applications in

marine sound field prediction, geoacoustic model research, and marine

engineering investigation. The geoacoustic properties of shallow

sediments from several meters to tens of meters below the seafloor

are closely related to the geological environment of the seafloor, and the

relationship between their acoustic and physical properties has been a

focus of research (Hou, 2016). For the research of marine acoustics, the

characteristics of shear waves in seafloor sediments are of great

significance for the interpretation of experimental results of marine

acoustic propagation and the accurate prediction of sound fields (Lu

et al., 2004). In the field of marine engineering investigation,

measurements of sediment shear wave speed and shear modulus are

widely used in the study of foundation-bearing capacity, sand

liquefaction caused by earthquakes, and consolidation behavior

(Jackson and Richardson, 2007; Guo et al., 2023). In addition,

sediment shear wave speed is an indispensable parameter for

establishing a complete geoacoustic model (Buckingham, 2005).

Many scholars have studied the correlation between shear wave

speed and physical parameters of seafloor sediments and built

empirical equations based on single or dual physical parameters

of seafloor sediment. Richardson and Briggs (1996) studied the

difference in shear wave speed between muddy and sandy sediments

but did not build the corresponding empirical equations of the

correlation between shear wave speed and the physical parameters

of seafloor sediments. Lu et al. (2004) analyzed a small number of

shallow seafloor sediment samples from the Yellow Sea, East China

Sea, and South China Sea and established single-parameter

regression empirical equations for shear wave speed, sediment

density, and liquid limit, respectively. Pan et al. (2006) measured

the shear wave speed of 10 seafloor sediment samples collected at

seven stations located in different marine areas and established

single-parameter regression equations between the shear wave

speed and water content, density, porosity, plastic limit, and

liquid limit, respectively. Kan et al. (2014) established single

empirical equations between the shear wave speed and the

density, water content, compression coefficient, and shear

strength of the sediments in the central area of the South Yellow

Sea. However, the single-parameter prediction equation cannot

fully reflect the relationship between shear waves and physical

properties. In order to overcome the shortcomings of single-

parameter analysis, some scholars have also carried out dual-

parameter analysis of shear wave speed and physical and

mechanical properties of sediments. Lu and Liang (1991)

established the dual-parameter regression equations between the

shear wave speed and the dual-parameter pair of unconfined

compression strength and strength sensitivity of sediments and

pointed out that the dual-parameter equations have higher

correlation coefficients than the single-parameter equations. Kan

et al. (2020) established dual-parameter regression empirical

equations of shear wave speed with porosity and average grain

size at different frequencies based on data from the northern part of

the South China Sea, and the correlation coefficient was significantly

improved compared to the single-parameter empirical equation.
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The single- or dual-parameter prediction equations cannot fully

reflect the relationship between shear waves and physical properties.

Acoustic properties such as the shear wave speed of seafloor

sediments are often controlled by multiple physical parameters,

and the use of multiple physical parameters for acoustic property

prediction modeling is essential to improving prediction accuracy.

Machine learning algorithms can automatically analyze the

multidimensional known data to obtain a prediction model and

use the model to predict the unknown data. Using machine learning

algorithms, it is possible to establish a prediction model for

sediment acoustic properties based on multiple physical

parameters. Chen et al. (2022; 2023) established a multiparameter

sound speed prediction model for the seafloor sediment in the

middle of the South Yellow Sea and the East China Sea, using a

machine learning algorithm, and the prediction error was

significantly reduced compared with the single- and dual-

parameter regression empirical equations. Hou et al. (2023)

developed a sound speed prediction model of seafloor sediment

using deep neural networks. The shear wave speed prediction

models in the northern part of the South China Sea are based on

a single physical parameter or two physical parameters that have

been established, but there is a lack of shear wave speed prediction

models using machine learning algorithms based on multiple

physical properties of sediments. The aim of this paper is to

establish a multiparameter shear wave speed prediction model

based on the XGBoost algorithm to achieve an accurate

prediction of the shear wave speed of the seafloor sediment in the

northern part of the South China Sea. This study is beneficial for

enriching the marine geoacoustic model library and presenting

models for seafloor sediment shear wave speed.
Study area and data source

Location of the study area

The study area is located in the northern area of the South

China Sea between 14°N–20°N and 108°E–115°E, where the

submarine geomorphology is continental shelf and continental

slope. The main sources of seafloor sediments in this area are

continental and island rivers. The continental shelf is dominated by

terrigenous clastic sediments; the sediments are mainly composed

of clayey sand, silty sand, and sandy silt. The sediments on the

continental slope are mainly composed of silty clay and clayey silt.
Data sources

The samples were collected by using a gravity corer, and

sediment columnar samples were obtained from 21 stations; 16

stations were taken from the continental slope, and five stations

were taken from the continental shelf. Shear wave speed

measurements were carried out in the laboratory using a

piezoelectric ceramic bending element test system to obtain shear

wave speed with an excitation frequency of 2 kHz. The physical

properties were measured in the geotechnical laboratory to obtain
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different types of sediment physical properties, namely porosity (n),

water content (w), density (r), average grain size (MZ), sand content

(S), silt content (T), and clay content (Y). The results of the shear

wave speed and physical parameter measurement are shown in

Table 1. The seafloor sediments in the study area include coarse silt,

silty sand, silty clay, sand–silt–clay, sandy silt, clayey silt, clayey

sand, and medium silt, among which there are more silty clay and

clayey sand and less coarse silt, sand–silt–clay, and medium silt.

Table 1 shows that the density of the sediments in the study area

ranges from 1.3 g/cm3 to 1.98 g/cm3, the porosity ranges from

42.4% to 82.4%, the water content ranges from 26.1% to 173.0%, the

average grain size ranges from 4.18 to 8.59f (f=log2d, d is the grain
size in millimeters), the sand content ranges from 0.5% to 74.7%,

the silt content ranges from 10.9% to 86.6%, the clay content ranges

from 6.08% to 73.9%, and the shear wave speed ranges from 15.81

m/s to 75.55 m/s. Among them, the silty clay has the lowest shear

wave speed, and the sandy silt has the highest. The physical

properties of the different sediment types are different. Silt, sandy

silt, and sandy clay have higher density, larger average grain size,

lower porosity, and lower water content. On the contrary, silty clay,

clay silt, coarse silt, medium silt, and sand–silt–clay have lower

densities, smaller average grain size, and higher porosity and

water content.
Shear wave speed prediction based on
the XGBoost algorithm

XGBoost algorithm

eXtreme Gradient Boosting (XGBoost) is an integrated learning

algorithm based on the Gradient Boosting Decision Tree (GBDT)

algorithm. The basic idea of the XGBoost is to train a new model

based on the errors in the old model, which is a weak classifier,

generate a series of models in an iterative serial fashion, and sum

these models in a linearly weighted fashion to form a powerful

integrated model which is a strong classifier (Qian et al., 2020). The

XGBoost algorithm introduces a regularization term, which

controls the complexity of the model and prevents overfitting

(Chen and Guestrin, 2016). In addition, the XGBoost algorithm
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has higher efficiency for optimal solutions because it performs

second-order Taylor expansions on the loss function, while

traditional GBDT only utilizes first-order derivative information

(Li et al., 2018). So, the XGBoost algorithm was chosen to build the

prediction model of the shear wave speed. For the XGBoost

algorithm, the dataset for training to build the integrated model is

assumed to have n samples andm features, and the ith sample of the

training dataset can be represented as (xi,yi). Here, xi denotes the

feature vector of the ith sample, representing the physical

parameters of sediments, and yi denotes the label of the ith

sample, representing the shear wave speed of sediments. After K

iterations, the predicted value (YK
i ) of the integrated model for the

ith sample can be expressed as:

YK
i = o

K

k=1

Tk(xi) (1)

In Equation 1, Tk(xi) denotes the function that maps the

features to the weights of the leaf nodes of the tree structure,

which can be expressed as Tk(xi) = wq(xi). w is the weight of the leaf

nodes. q(xi) denotes the position of the ith sample in the K decision

trees. The objective function of the XGBoost algorithm is:

ObjK =o
n

i=1
l(yi,Y

K
i ) +o

K

k=1

W(Tk) (2)

In Equation 2, l(yi,Y
k
i ) is the loss function representing the

error between the predicted values from the model and the real

values for the ith sample. ok
k=1W(Tk) is the regularization item,

which is used to limit the number of leaf nodes to prevent the fitting

phenomenon in the training process. It can be expressed as:

W(Tk) = g T +
1
2
lo

T

j=1
w2
j (3)

In Equation 3, g is the learning rate used to control the number

of leaf nodes. T is the number of young leaf nodes. l is a regular

parameter used to control the score of the leaf node.

The XGBoost model is a front-oriented distribution algorithm,

and the iterative form of the target function can be expressed as:

ObjK =o
n

i=1
l yi,Y

K−1
i + TK (xi)

� �
+W(TK ) (4)
TABLE 1 Measurement results of shear wave speed and physical parameters of sediment samples in the study area.

Sediment type VS (m/s) n (%) W (%) r (g/cm3) MZ (f) S (%) T (%) Y (%)

Coarse silt 22.17–55.66 44.0–76.4 31–118.6 1.39–1.98 5.56–6.10 3.9–8.7 75.4–86.6 9.5–17.6

Silty sand 51.61–71.92 43.3–49.5 26.8–38.2 1.86–1.94 4.18–5.19 45.8–74.7 13.4–37.7 10.7–20.5

Silty clay 15.81–45.10 64.0–81.8 63.7–159.9 1.30–1.62 6.31–8.59 1.9–43.5 17.1–57.9 6.52–73.9

Sand–silt–clay 19.93–32.35 73.0–79.2 97.0–140.4 1.37–1.47 6.04–6.22 28.9–30.5 29.4–37.0 34.1–41.0

Sandy silt 62.68–75.55 43.1–50.5 27.5–35.4 1.81–1.96 4.89–5.66 28.5–35.4 44.0–50.1 17.0–21.8

Clayey silt 16.17–59.44 42.5–82.4 26.3–173.0 1.30–1.96 5.99–8.01 0.5–65.6 20.4–74.4 6.08–49.1

Clayey sand 53.14–73.29 42.4–52.5 26.1–40.4 1.80–1.96 4.29–4.86 61.7–74.5 10.9–18.4 14.6–20.2

Medium silt 17.47–28.81 76.9–80.6 121.1–153.3 1.33–1.98 6.54–6.79 2.1–4.6 76.7–78.5 16.9–21.2
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In order to find the minimum value of the target function, the

second order of (Equation 4) Taylor at Tk = 0 is:

ObjK =o
n

i=1
l(yi,Y

K−1
i ) + giTK (xi) +

1
2
hi(TK(xi))

2
� �

+W(TK ) (5)

gi =
∂l(yi,Y

K−1
i )

∂YK−1
i

(6)

hi =
∂2l(yi,Y

K−1
i )

∂2YK−1
i

(7)

In Equation 5, gi is the first-order guide, calculated by Equation

6; hi is the second order guide, calculated by Equation 7.

XGBoost achieves the generation of the learning device by

optimizing the structured losses and improves the performance of

the algorithm by utilizing the first-order and second-order

derivative values of the loss function and through preorder and

weighted seminars. Substituting the regularization term expression

into Equation 5, the final minimum value of the objective function

is obtained, as in Equation 8.

Obj* = −
1
2 o

k

m=1

G2
m

Hm + l

� �
+ g T (8)

The smaller the target function, the smaller the gap between the

real values and the model-predicted values, and the better the

model fit.
Characteristic parameter selection

After removing outliers and missing values, a total of 226

datasets were obtained, and eight parameters were included in

each set: shear wave speed at 2 kHz, sediment n, w, r, MZ, S, T,

and Y. Thus, the dimension of the sample data is (226, 8). The

number of data samples is similar to that used to predict sediment

sound speed based on the machine learning algorithm in the

following literature (Hou et al., 2019; Hou et al., 2023; Chen

et al., 2022, 2023) and can be used to train the machine learning

prediction model for predicting shear wave speed of

seafloor sediments.

In machine learning, the Pearson correlation coefficient is

commonly used for feature selection, which helps us find the

features with high correlation in the dataset, reducing the number

of features, improving the generalization ability of the model, and

reducing the computation time (Qi et al., 2023). The Pearson

correlation coefficient was used to determine the correlation

between the sediment shear wave speed and physical parameters. If

the coefficient is negative, it means that the two features are negatively

correlated, and if the coefficient is positive, the two features are

positively correlated. The closer the absolute value of the coefficient is

to 1, the greater the degree of correlation. The Pearson correlation

coefficient between X and Y variables can be expressed by Equation 9.

rX,Y =
E(XY)� E(X)E(Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E(X2)� E2(X)
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E(Y2)� E2(Y)
p (9)
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The Pearson correlation coefficient of the physical

parameters and shear wave speed was calculated for the 226

sets of data, and the correlation coefficients of seafloor sediment

shear wave speed with n, w, r, MZ, S, T, and Y are −0.88, −0.81,

0.86, −0.76, −0.55, 0.15, and 0.48, respectively, as shown in

Figure 1. According to Figure 1, the n, w, r, and MZ have high

correlation coefficients with the shear wave speed and are

selected as the input parameters for the model.
Dataset segmentation

Four physical parameters and the shear wave speed are selected to

participate in the subsequent model establishment, and the

dimension of the sample data is (226, 5). Firstly, the sample is

divided into two parts: one part is used for model building, and the

other part is not involved in model building and is used for testing

after model building. Subsequently, the dataset used for model

building is divided into a training dataset and a validation dataset.

The training dataset is used to establish the initial hyperparameters of

the model. The validation dataset is used to adjust the

hyperparameters in XGBoost in the model to prevent overfitting

and select the optimal model. The test dataset is used to evaluate the

performance of the model through a comparison between the

measured shear wave speed and the prediction of the model. Using

random numbers, 166 datasets are randomly selected for model

training with a data dimension of (166, 5), 30 datasets are randomly

selected for model validation with a data dimension of (30, 5), and the

remaining 30 datasets are randomly selected for model testing with a

data dimension of (30, 5). As shown in Figure 2, the sediment types in

the study area are diverse, and the physical properties and shear wave

speeds of different sediment types are different. The datasets of

training data, validation data, and test data all contain multiple
FIGURE 1

Pearson correlation coefficient matrix for each factor. The last
column shows the Pearson correlation coefficient between the
shear wave speed of the sediments and physical parameters.
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sediment types, which can ensure the applicability of the model to

different types of sediments.
Results

Indicators for assessing the results of
model predictions

The mean absolute error (MAE), mean absolute percentage error

(MAPE), and goodness of fit (R2) are selected as indicators to evaluate

the predictive ability. The MAE and MAPE reflect the mean absolute

error and mean absolute percentage error between the predicted values

and the real values, respectively. R2 reflects the degree of goodness offit

of the model. They are expressed as:

MAE =
1
no

n

i=1
yi − Yij j (10)

MAPE =
100%
n o

n

i=1

yi − Yi

yi

				
				 (11)

R2 = 1 −o
n
i=1(Yi − yi)

2

on
i=1(yi − yi)

2 (12)

In Equations 10–12, n is the number of the sample, Yi is the

predicted value, yi is the real value, and yi is the mean of the real values.
Model building and optimization

At first, the 166 sets of training data were substituted into the

model for training by using the default hyperparameters in XGBoost

to train the data, which was calledModel0. Substituting the validation

data into Model0, the validation goodness of fit of Model0 was 0.902,
Frontiers in Marine Science 05
and the MAE and MAPE between the validation data and the real

values were 3.926 m/s and 12.2%, respectively. In order to obtain a

better fitting effect, some hyperparameters were adjusted using a

random search method and crossvalidation function. The results are

shown in Table 2. The adjusted parameters were entered into the

model, and the model was retrained, which was called Model1. Now,

theMAE,MAPE, and R2 for the validation data were 3.41 m/s, 10.1%,

and 0.913, respectively. Compared with the results of Model0, the

prediction performance of Model1 was improved with a smaller

MAE and higher R2.

In addition to the hyperparameters mentioned above, two other

hyperparameters, n_estimators and max_depth, are very important for

the accuracy of the model training. The n_estimators indicates the

number of weak learners (regression trees) in the model; a smaller

number of learners will lead to insufficient model performance, and a

larger number may improve model performance but will increase

training time and memory consumption. The max_depth parameter

indicates the maximum depth of the tree, specifying the weak learners.

A deeper tree can capture more complex interactions between the

features, but the deeper the tree, there greater the risk of overfitting. The

n_estimators and max_depth were manually adjusted and optimized

according to the curves of MAE changing with the n_estimators and

max_depth for the training and validation sets, shown in Figures 3, 4,

respectively. As shown in Figure 3, when the value of n_estimators is

115, theMAE of the validation data and the real values are the smallest.

As shown in Figure 4, when the value of max_depth is 6, the MAE is

the smallest.

The value of the hyperparameters of the XGBoost model was

finally obtained through the adjustment and optimization using the

random search, crossvalidation function, and manual optimization.

When the adjusted parameters were substituted into the model, it

was the best-fitted model for the prediction of the shear wave speed

in the study area and can be called Model2. The coefficient of

determination of the validation data was 0.914, and the MAE and

MAPE of the predicted values of the training data and the measured

data were 3.366 m/s and 9.90%, respectively. Figure 5 shows the

comparison between the model’s predicted values and the real

values. The predicted data are closely matched with the real data,

and the multiparameter shear wave speed prediction model

constructed based on the XGBoost algorithm has a small

difference between the predicted values and the real values, and

the model prediction accuracy is high.
TABLE 2 Optimization results for the hyperparameters of the random
search section.

Model
parameter

Search area Optimization
results

reg_alpha [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 0.4

reg_lambda [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 0.5

subsample [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 0.5

colsample_bytree [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 0.5

colsample_bylevel [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 0.7

learning_rate [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 0.1
FIGURE 2

Sediment triangulation map of dataset delineation results in this
paper. The gray data points in the figure represent the training data,
the orange data points represent the validation data, and the blue
data points represent the test data.
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Analysis of the contribution of
characteristic parameters

Lundberg and Lee (2017) proposed the SHapley Additive

exPlanations (SHAP) method to explain the machine learning

model and evaluated the importance of features by calculating

the average value of the absolute value of each feature in the

sample data. Figure 6 shows the average value of the absolute

SHAP value of each feature variable as the importance of this
Frontiers in Marine Science 06
feature. It can be seen that the main influencing factors on shear

wave speed in the XGBoost model are porosity and water

content, followed by density and average grain size.
Discussion

In order to analyze the predictive performance of the

multiparameter shear wave speed prediction model based on the
FIGURE 3

Trend of MAE with n_estimators hyperparameter in model training and validation. The red solid line is the iteration change of the model training
error, and the orange solid line is the iteration change of the validation result error.
FIGURE 4

Trend of MAE with max_depth hyperparameter in model training and validation. The red solid line is the iteration change of the model training error,
and the orange solid line is the iteration change of the validation result error.
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XGBoost algorithm, the following section will use the same 166 sets

of training data to build the single- and dual-parameter prediction

models and the GS prediction model and compare the prediction

errors and the magnitude of the coefficients of determination of

the models.
Single-parameter prediction model

The 166 sets of training data were used to establish four single-

parameter prediction models. The mathematical relationship
B

A

FIGURE 5

Comparison of predicted and real values: (A) 166 sets of training sample; (B) 30 sets of validation sample. The solid green line represents the MAE
between each prediction value and the real values.
FIGURE 6

Ranking the average influence values of the model output.
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between the physical parameters of the sediment and the shear wave

speed was fitted using the least squares method to establish the

corresponding single-parameter empirical equations listed in

Table 3. As shown in Table 3, the shear wave speed has high

correlations with the porosity, water content, density, and average

grain size, whose goodness of fit is all greater than 0.66. The

predicted shear wave speed using the single-parameter prediction

equations in Table 3 and the real values are compared and shown in

Figure 7. According to Figure 7 and Table 3, the MAEs of the single-

parameter prediction equations are all higher than 5 m/s, and the

prediction equation based on porosity is the lowest with an MAE of

5.014, while that of the prediction equation based on average grain

size is the highest with an MAE of 5.427.
Dual-parameter prediction model

The same 166 sets of training data were used to establish six

dual-parameter prediction models. The mathematical relationship

between the physical parameters of the sediment and the shear wave

speed was fitted using the least squares method, and the

corresponding dual-parameter empirical equations were

established and listed in Table 4. Similarly, the predicted shear

wave speed using the dual-parameter prediction equations in

Table 4 and the real values are compared and shown in Figure 8.

The results show that the goodness of fit of the dual-parameter

prediction equations is all greater than 0.78, which is higher than

that of the single-parameter prediction equations established in this

paper. The MAEs of the dual-parameter prediction equations are all

less than 4.8 m/s, which is lower than that of the single-parameter

equations. This indicates that the dual-parameter equations have a

higher prediction accuracy than the single-parameter equations.
GS model

In recent years, researchers have studied the propagation mode

of sound waves in sediments and summarized models for predicting

sound speed in different theoretical media. Buckingham (1997)

proposed the grain-shearing (GS) model, which introduced the

sticky-slip mechanism between sediment grains, and believed that

saturated, unconsolidated particle media have dual properties of
Frontiers in Marine Science 08
fluid and elastic solid, and grains do not cement each other although

they contact each other. Furthermore, it is believed that the stiffness

of the sediment is generated by the mutual sliding of the grains, and

the stiffness supports the existence of shear waves in the sediment.

The equation for calculating the shear wave speed is as follows:

Vs =
ffiffiffiffi
gs
r

r
(wT)

n
2

cos( np4 )
(13)

Where, gs is the shear stiffness coefficient, which is used to

describe the viscous sliding mechanism and characterize the shear

action between grains, calculated by Equation 14. r is the density of

deposited objects, calculated by Equation 15. w is the angular

frequency. T is any time variable, which can be set to 1 s. n is the

strain hardening index, which represents the strain hardening

degree of intergranular contact when sediment grains slip.

g s = g s0(
1 − b)ugd

(1 − b0)ug0d0

 !2
3

(14)

Where, gs0 is the initial value of gs. b, ug, and d represent

measured sediment fraction porosity, grain size, and buried depth,

respectively. b0, ug0, and d0 are the reference values of fractional

porosity, grain size, and buried depth of sediments, and the specific

values are shown in Table 5.

r = (1 − b)*rg + b*rf (15)

ug = 2−f (16)

Where, rg is the particle density, rf is the pore fluid density, and

f represents the grain size in Equation 16; here, the average grain

size of the sediment is selected.

The 166 sets of training data are substituted into Equation 13 to

obtain the minimum value of the mean absolute error between the

predicted and real values of the shear wave speed, which leads to the

optimal values of the shear coefficient and strain hardening index.

The values of the input parameters of GS for best fitting are shown

in Table 5. Substituting the parameter values into the model, the

results of the predicted and real values are shown in Figure 9. The

goodness of fit of the model was 0.678; the MAE and MAPE

between the real values and the predicted values were 5.253 m/s

and 18.09%, respectively.
TABLE 3 Single-parameter prediction models.

Relate parameter Prediction equation Goodness of fit (R2) MAE (m/s) MAPE (%)

n y = 0.0194n2 − 3.5293n
+ 183.3

0.774 5.014 17.0

w y = 0.002w2 − 0.7547w
+ 79.717

0.721 5.338 18.4

r y = 74.127r2 − 177.71r
+ 130.09

0.753 5.195 17.3

Mz y = 3.4991 M2
z − 54.473Mz

+ 238.16

0.661 5.427 18.9
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Comparison of predicted results of
each model

To check the accuracy of model fitting, 30 groups of test data that

were not involved in model building were substituted into each

prediction model, and the difference between the predicted values

and the real values of different models was analyzed. The MAEs and

the MAPEs between the predicted values and the real values of each

model were calculated, and the results are shown in Figure 10. It can be
Frontiers in Marine Science 09
seen that the XGBoostmodel has the smallestMAE andMAPE and the

highest goodness of fit compared to the single-parameter prediction

models, dual-parameter prediction models, and GS prediction model.
Conclusions

In this paper, using the seafloor sediments obtained in the

northern part of the South China Sea, the correlation between the
TABLE 4 Dual-parameter prediction models.

Related
parameter

Prediction equation Goodness of
fit (R2)

MAE (m/s) MAPE (%)

n, w y = 0.0529n2 − 7.4559n − 0.00346w − 1.0373w + 0.017nw
+ 304.0410

0.8137 4.4217 15.2

n, r y = 0.3296n2 − 98.997n + 888.0952r2 − 5108.5r + 33.6063nr
+ 7483.2

0.7851 4.7904 16.5

n, Mz y = −0.0207n2 − 1.5186n − 1.9425 M2
z − 11.6252Mz + 0.5203nMz

+ 163.0088

0.8084 4.4310 15.0

w, r y = −0.0045w2 + 2.7236w + 34.7296r2 + 22.4522r − 1.3387wr
− 109.0748

0.7878 4.7829 16.0

w, Mz y = −0.0014w2 − 1.1059w − 1.5879 M2
z + 2.7548Mz + 0.1710wMz

+ 96.57632

0.8252 4.0967 13.8

r, Mz y = −63.1273r2 + 430.0906r − 1.5759 M2
z + 61.9130Mz −

28.1868rMz − 530.3517

0.7954 4.6084 15.5
B

C D

A

FIGURE 7

Comparison of predicted shear wave speed from the single-parameter prediction models with real values: (A) porosity, (B) water content, (C)
density, and (D) average grain size. The gray curve in the figures represents the real values. The solid green lines show the MAE between the
predicted and real values of the 166 training samples.
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TABLE 5 Input parameters of GS model.

Parameter Symbol Units Value

Reference grain diametera ug0 mm 1,000

Reference depth in sedimenta d0 m 0.3

Reference porositya b0 – 0.37

Average grain sizeb ug mm Measured

Depth in sedimentb d m Measured

Porosityb b – Measured

(Continued)
F
rontiers in Marine Science
B
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E F

FIGURE 8

Comparison of predicted shear wave speed from the dual-parameter prediction models with real values: (A) porosity—water content, (B) porosity—
density, (C) porosity—average grain size, (D) water content—density, (E) water content—average grain size, and (F) density—average grain size. The
gray curve in the figures represents the real values, and the solid green lines show the mean absolute error between the predicted and real values of
the 166 training samples.
10
TABLE 5 Continued

Parameter Symbol Units Value

Shear coefficientc gs0 Pa 4.705 × 107

Strain-hardening indexc n – 0.065

Density of graina rg kg·m–3 2,730

Density of pore watera rf kg·m–3 1,005
fro
aPhysical parameter indicating the value reference (Buckingham, 1997).
bFor these physical parameters, refer to Table 1 for the range of values.
cPhysical parameters that were obtained by fitting measured data.
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sediment shear wave speed and the physical properties was

investigated, the multi-parameter shear wave speed prediction

model based on the XGBoost algorithm was established, and the

predicted results of the XGBoost model were compared with the

single- and dual-parameter models and the GS model. The

conclusions are summarized as follows:

(1) The shear wave speed of shallow sediments in the study area

has a good correlation with porosity, water content, density, and

average grain size. By optimizing the hyperparameters of the model,
Frontiers in Marine Science 11
the best fit of the XGBoost algorithm is obtained when the

n_estimator and max_depth are 115 and 6, respectively. The

mean absolute error and the goodness of fit between the predicted

values and validation data are 3.366 m/s and 9.90%, respectively.

Compared with the single-parameter prediction models, the

dual-parameter prediction models, and the GS prediction model,

the multiparameter shear wave speed prediction model based on the

XGBoost algorithm has the lowest MAE and MAPE between the

test data and the predicted values, which are 4.04 m/s and 14.3%,
FIGURE 10

Comparison of the error of predicted results of 30 groups of test data substituted into each model.
FIGURE 9

Comparison of predicted shear wave speed from the GS model with real values. The gray curve in the figure represents the real values, the brown
curve represents the adjusted GS model predicted values, and the solid green lines show the mean absolute error between the predicted and real
values of the 166 training samples.
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respectively. It indicates that the multiparameter shear wave speed

prediction model based on the XGBoost algorithm has a higher

accuracy for predicting the shear wave speed in this area (2).
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